Descripteur
Documents disponibles dans cette catégorie (4925)


Etendre la recherche sur niveau(x) vers le bas
A remote sensing assessment index for urban ecological livability and its application / Junbo Yu in Geo-spatial Information Science, vol 26 n° inconnu ([01/08/2023])
![]()
[article]
Titre : A remote sensing assessment index for urban ecological livability and its application Type de document : Article/Communication Auteurs : Junbo Yu, Auteur ; Xinghua Li, Auteur ; Xiaobin Guan, Auteur ; Huanfeng Shen, Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] afforestation
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] indicateur environnemental
[Termes IGN] Wuhan (Chine)
[Termes IGN] zone urbaine denseMots-clés libres : The proposed Ecological Livability Index (ELI) covers five primary ecological indicators – greenness, temperature, dryness, water-wetness, and atmospheric turbidity – which are geometrically aggregated by non-equal weights based on an entropy method. Résumé : (auteur) Remote sensing provides us with an approach for the rapid identification and monitoring of spatiotemporal changes in the urban ecological environment at different scales. This study aimed to construct a remote sensing assessment index for urban ecological livability with continuous fine spatiotemporal resolution data from Landsat and MODIS to overcome the dilemma of single image-based, single-factor analysis, due to the limitations of atmospheric conditions or the revisit period of satellite platforms. The proposed Ecological Livability Index (ELI) covers five primary ecological indicators – greenness, temperature, dryness, water-wetness, and atmospheric turbidity – which are geometrically aggregated by non-equal weights based on an entropy method. Considering multisource time-series data of each indicator, the ELI can quickly and comprehensively reflect the characteristics of the Ecological Livability Quality (ELQ) and is also comparable at different time scales. Based on the proposed ELI, the urban ecological livability in the central urban area of Wuhan, China, from 2002 to 2017, in the different seasons was analyzed every 5 years. The ELQ of Wuhan was found to be generally at the medium level (ELI ≈0.6) and showed an initial trend of degradation but then improved. Moreover, the ecological livability in spring and autumn and near rivers and lakes was found to be better, whereas urban expansion has led to the outward ecological degradation of Wuhan, but urban afforestation has enhanced the environment. In general, this paper demonstrates that the ELI has an exemplary embodiment in urban ecological research, which will support urban ecological protection planning and construction. Numéro de notice : A2022-612 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2022.2072775 Date de publication en ligne : 14/06/2022 En ligne : https://doi.org/10.1080/10095020.2022.2072775 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101366
in Geo-spatial Information Science > vol 26 n° inconnu [01/08/2023][article]Evaluating TROPOMI and MODIS performance to capture the dynamic of air pollution in São Paulo state: A case study during the COVID-19 outbreak / A.P. Rudke in Remote sensing of environment, vol 289 (May 2003)
![]()
[article]
Titre : Evaluating TROPOMI and MODIS performance to capture the dynamic of air pollution in São Paulo state: A case study during the COVID-19 outbreak Type de document : Article/Communication Auteurs : A.P. Rudke, Auteur ; J.A. Martins, Auteur ; R. Hallak, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 113514 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] correction atmosphérique
[Termes IGN] dioxyde d'azote
[Termes IGN] épidémie
[Termes IGN] image Sentinel-5P-TROPOMI
[Termes IGN] image Terra-MODIS
[Termes IGN] pollution atmosphérique
[Termes IGN] qualité de l'air
[Termes IGN] Sao PauloRésumé : (auteur) Atmospheric pollutant data retrieved through satellite sensors are continually used to assess changes in air quality in the lower atmosphere. During the COVID-19 pandemic, several studies started to use satellite measurements to evaluate changes in air quality in many different regions worldwide. However, although satellite data is continuously validated, it is known that its accuracy may vary between monitored areas, requiring regionalized quality assessments. Thus, this study aimed to evaluate whether satellites could measure changes in the air quality of the state of São Paulo, Brazil, during the COVID-19 outbreak; and to verify the relationship between satellite-based data [Tropospheric NO2 column density and Aerosol Optical Depth (AOD)] and ground-based concentrations [NO2 and particulate material (PM; coarse: PM10 and fine: PM2.5)]. For this purpose, tropospheric NO2 obtained from the TROPOMI sensor and AOD retrieved from MODIS sensor data by using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm were compared with concentrations obtained from 50 automatic ground monitoring stations. The results showed low correlations between PM and AOD. For PM10, most stations showed correlations lower than 0.2, which were not significant. The results for PM2.5 were similar, but some stations showed good correlations for specific periods (before or during the COVID-19 outbreak). Satellite-based Tropospheric NO2 proved to be a good predictor for NO2 concentrations at ground level. Considering all stations with NO2 measurements, correlations >0.6 were observed, reaching 0.8 for specific stations and periods. In general, it was observed that regions with a more industrialized profile had the best correlations, in contrast with rural areas. In addition, it was observed about 57% reductions in tropospheric NO2 throughout the state of São Paulo during the COVID-19 outbreak. Variations in air pollutants were linked to the region economic vocation, since there were reductions in industrialized areas (at least 50% of the industrialized areas showed >20% decrease in NO2) and increases in areas with farming and livestock characteristics (about 70% of those areas showed increase in NO2). Our results demonstrate that Tropospheric NO2 column densities can serve as good predictors of NO2 concentrations at ground level. For MAIAC-AOD, a weak relationship was observed, requiring the evaluation of other possible predictors to describe the relationship with PM. Thus, it is concluded that regionalized assessment of satellite data accuracy is essential for assertive estimates on a regional/local level. Good quality information retrieved at specific polluted areas does not assure a worldwide use of remote sensor data. Numéro de notice : A2023-170 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2023.113514 Date de publication en ligne : 21/02/2023 En ligne : https://doi.org/10.1016/j.rse.2023.113514 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102930
in Remote sensing of environment > vol 289 (May 2003) . - n° 113514[article]Towards global scale segmentation with OpenStreetMap and remote sensing / Munazza Usmani in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 8 (April 2023)
![]()
[article]
Titre : Towards global scale segmentation with OpenStreetMap and remote sensing Type de document : Article/Communication Auteurs : Munazza Usmani, Auteur ; Maurizio Napolitano, Auteur ; Francesca Bovolo, Auteur Année de publication : 2023 Article en page(s) : n° 100031 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bâtiment
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données localisées des bénévoles
[Termes IGN] image à haute résolution
[Termes IGN] information sémantique
[Termes IGN] occupation du sol
[Termes IGN] OpenStreetMap
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] utilisation du solRésumé : (auteur) Land Use Land Cover (LULC) segmentation is a famous application of remote sensing in an urban environment. Up-to-date and complete data are of major importance in this field. Although with some success, pixel-based segmentation remains challenging because of class variability. Due to the increasing popularity of crowd-sourcing projects, like OpenStreetMap, the need for user-generated content has also increased, providing a new prospect for LULC segmentation. We propose a deep-learning approach to segment objects in high-resolution imagery by using semantic crowdsource information. Due to satellite imagery and crowdsource database complexity, deep learning frameworks perform a significant role. This integration reduces computation and labor costs. Our methods are based on a fully convolutional neural network (CNN) that has been adapted for multi-source data processing. We discuss the use of data augmentation techniques and improvements to the training pipeline. We applied semantic (U-Net) and instance segmentation (Mask R-CNN) methods and, Mask R–CNN showed a significantly higher segmentation accuracy from both qualitative and quantitative viewpoints. The conducted methods reach 91% and 96% overall accuracy in building segmentation and 90% in road segmentation, demonstrating OSM and remote sensing complementarity and potential for city sensing applications. Numéro de notice : A2023-148 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.ophoto.2023.100031 Date de publication en ligne : 16/02/2023 En ligne : https://doi.org/10.1016/j.ophoto.2023.100031 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102807
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 8 (April 2023) . - n° 100031[article]Des mesures au sol aux images satellite : quelles données pour étudier la pollution lumineuse ? / Christophe Plotard in XYZ, n° 174 (mars 2023)
[article]
Titre : Des mesures au sol aux images satellite : quelles données pour étudier la pollution lumineuse ? Type de document : Article/Communication Auteurs : Christophe Plotard, Auteur ; Philippe Deverchère, Auteur ; Sarah Potin, Auteur ; Sébastien Vauclair, Auteur Année de publication : 2023 Article en page(s) : pp 33 - 38 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] analyse comparative
[Termes IGN] carte thématique
[Termes IGN] données de terrain
[Termes IGN] échelle d'intensité
[Termes IGN] flux lumineux
[Termes IGN] image à basse résolution
[Termes IGN] image à très haute résolution
[Termes IGN] image NPP-VIIRS
[Termes IGN] image satellite
[Termes IGN] impact sur l'environnement
[Termes IGN] intensité lumineuse
[Termes IGN] inventaire
[Termes IGN] modèle numérique de surface
[Termes IGN] modélisation 3D
[Termes IGN] photomètre
[Termes IGN] pollution lumineuse
[Termes IGN] prise de vue nocturne
[Termes IGN] radianceRésumé : (Auteur) Le développement de l’éclairage artificiel nocturne est à l’origine d’une pollution lumineuse aux effets néfastes pour la biodiversité, la santé humaine, la consommation énergétique et l’observation astronomique. Pour analyser les différentes formes de cette pollution, le bureau d’études DarkSkyLab s’appuie sur plusieurs types de données tels que des mesures depuis le sol, des images satellitaires et aériennes, ou des inventaires de points d’éclairage. Cet article en présente les principaux aspects, de même que divers outils, méthodes et indicateurs conçus pour permettre leur traitement, leur modélisation et leur représentation cartographique. Numéro de notice : A2023-069 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/IMAGERIE Nature : Article nature-HAL : ArtSansCL DOI : sans Date de publication en ligne : 01/03/2023 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102863
in XYZ > n° 174 (mars 2023) . - pp 33 - 38[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 112-2023011 SL Revue Centre de documentation Revues en salle Disponible SALT: A multifeature ensemble learning framework for mapping urban functional zones from VGI data and VHR images / Hao Wu in Computers, Environment and Urban Systems, vol 100 (March 2023)
![]()
[article]
Titre : SALT: A multifeature ensemble learning framework for mapping urban functional zones from VGI data and VHR images Type de document : Article/Communication Auteurs : Hao Wu, Auteur ; Wenting Luo, Auteur ; Anqi Lin, Auteur ; Fanghua Hao, Auteur ; Ana-Maria Olteanu-Raimond , Auteur ; Lanfa Liu, Auteur ; Yan Li, Auteur
Année de publication : 2023 Projets : 1-Pas de projet / Article en page(s) : n° 101921 Note générale : Bibliographie
This work was supported by the National Natural Science Foundation of China [42201468, 42071358], Postdoctoral Innovation Talents Support Program of China [BX20220128], China Postdoctoral Science Foundation [2022M721283] and Fundamental Research Funds for the Central Universities [CCNU22QN018].Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse multicritère
[Termes IGN] apprentissage automatique
[Termes IGN] boosting adapté
[Termes IGN] cartographie urbaine
[Termes IGN] Chine
[Termes IGN] détection du bâti
[Termes IGN] données localisées des bénévoles
[Termes IGN] image à très haute résolution
[Termes IGN] morphologie urbaine
[Termes IGN] OpenStreetMap
[Termes IGN] point d'intérêt
[Termes IGN] représentation spatiale
[Termes IGN] zone urbaineRésumé : (auteur) Urban functional zone mapping is essential for providing deeper insights into urban morphology and improving urban planning. The emergence of Volunteered Geographic Information (VGI), which provides abundant semantic data, offers a great opportunity to enrich land use information extracted from remote sensing (RS) images. Taking advantage of very-high-resolution (VHR) images and VGI data, this work proposed a SATL multifeature ensemble learning framework for mapping urban functional zones that integrated 65 features from the shapes of building objects, attributes of points of interest (POIs) tags, locations of cellphone users and textures of VHR images. The dimensionality of SALT features was reduced by the autoencoder, and the compressed features were applied to train the ensemble learning model composed of multiple classifiers for optimizing the urban functional zone classification. The effectiveness of the proposed framework was tested in an urbanized region of Nanchang City. The results indicated that the SALT features considering population dynamics and building shapes are comprehensive and feasible for urban functional zone mapping. The autoencoder has been proven efficient for dimension reduction of the original SALT features as it significantly improves the classification of urban functional zones. Moreover, the ensemble learning outperforms other machine learning models in terms of the accuracy and robustness when dealing with multi-classification tasks. Numéro de notice : A2023-125 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101921 Date de publication en ligne : 06/12/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101921 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102504
in Computers, Environment and Urban Systems > vol 100 (March 2023) . - n° 101921[article]The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes / Anna Iglseder in International journal of applied Earth observation and geoinformation, vol 117 (March 2023)
PermalinkA GIS-based method for modeling methane emissions from paddy fields by fusing multiple sources of data / Linhua Ma in Science of the total environment, vol 859 n° 1 (February 2023)
PermalinkAmazon forest spectral seasonality is consistent across sensor resolutions and driven by leaf demography / Nathan B. Gonçalves in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
PermalinkComparative analysis of different CNN models for building segmentation from satellite and UAV images / Batuhan Sariturk in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 2 (February 2023)
PermalinkGenerating Sentinel-2 all-band 10-m data by sharpening 20/60-m bands: A hierarchical fusion network / Jingan Wu in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
PermalinkLarge-scale burn severity mapping in multispectral imagery using deep semantic segmentation models / Xikun Hu in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
PermalinkPermalinkDecadal assessment of agricultural drought in the context of land use land cover change using MODIS multivariate spectral index time-series data / Thuong V. Tran in GIScience and remote sensing, vol 60 n° 1 (2023)
PermalinkDecision tree-based machine learning models for above-ground biomass estimation using multi-source remote sensing data and object-based image analysis / Haifa Tamiminia in Geocarto international, vol 38 n° inconnu ([01/01/2023])
PermalinkEstimating mangrove above-ground biomass at Maowei Sea, Beibu Gulf of China using machine learning algorithm with Sentinel-1 and Sentinel-2 data / Zhuomei Huang in Geocarto international, vol 38 n° inconnu ([01/01/2023])
Permalink