Descripteur
Documents disponibles dans cette catégorie (131)



Etendre la recherche sur niveau(x) vers le bas
Exploring the association between street built environment and street vitality using deep learning methods / Yunqin Li in Sustainable Cities and Society, vol 79 (April 2022)
![]()
[article]
Titre : Exploring the association between street built environment and street vitality using deep learning methods Type de document : Article/Communication Auteurs : Yunqin Li, Auteur ; Nobuyoshi Yabuki, Auteur ; Tomohiro Fukuda, Auteur Année de publication : 2022 Article en page(s) : n° 103656 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] apprentissage profond
[Termes IGN] attractivité (aménagement)
[Termes IGN] bati
[Termes IGN] image Streetview
[Termes IGN] Japon
[Termes IGN] morphologie urbaine
[Termes IGN] OpenStreetMap
[Termes IGN] piéton
[Termes IGN] planification urbaine
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] régression linéaire
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] système d'information géographique
[Termes IGN] urbanisme
[Termes IGN] ville intelligenteRésumé : (auteur) Street vitality has become an essential indicator for evaluating the attractiveness and potential of the sustainable development of urban blocks, and it can be reflected by the type and the frequency of people's pedestrian activities on the street. While it is recognized that street built environment features affect pedestrian behavior and street vitality, quantifying the impact of these characteristics remains inconclusive. This paper proposes an automated deep learning approach to quantitatively explore the association between the street built environment and street vitality. First, we established a deep learning model for street vitality classification for automatic evaluation of street vitality based on the volumes and activities of pedestrians in the street through multiple object tracking and scene classification. Then, we applied semantic segmentation to measure five selected vitality-related street built environment variables. Finally, a linear regression model was applied to evaluate the built environment variables’ significance and effects on street vitality. To verify our method's accuracy and applicability, we selected a commercial complex in Osaka as an illustrative example. The experimental results highlight that street width and transparency have significant positive effects on street vitality. Compared with traditional methods, our approach is feasible, reliable, transferable, and more efficient. Numéro de notice : A2022-266 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1016/j.scs.2021.103656 Date de publication en ligne : 10/01/2022 En ligne : https://doi.org/10.1016/j.scs.2021.103656 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100271
in Sustainable Cities and Society > vol 79 (April 2022) . - n° 103656[article]Traffic sign three-dimensional reconstruction based on point clouds and panoramic images / Minye Wang in Photogrammetric record, vol 37 n° 177 (March 2022)
![]()
[article]
Titre : Traffic sign three-dimensional reconstruction based on point clouds and panoramic images Type de document : Article/Communication Auteurs : Minye Wang, Auteur ; Rufei Liu, Auteur ; Jiben Yang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 87 - 110 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] correction d'image
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image panoramique
[Termes IGN] lidar mobile
[Termes IGN] reconstruction 3D
[Termes IGN] semis de points
[Termes IGN] signalisation routièreRésumé : (auteur) Traffic signs are a very important source of information for drivers and pilotless automobiles. With the advance of Mobile LiDAR System (MLS), massive point clouds have been applied in three-dimensional digital city modelling. However, traffic signs in MLS point clouds are low density, colourless and incomplete. This paper presents a new method for the reconstruction of vertical rectangle traffic sign point clouds based on panoramic images. In this method, traffic sign point clouds are extracted based on arc feature and spatial semantic features analysis. Traffic signs in images are detected by colour and shape features and a convolutional neural network. Traffic sign point cloud and images are registered based on outline features. Finally, traffic sign points match traffic sign pixels to reconstruct the traffic sign point cloud. Experimental results have demonstrated that this proposed method can effectively obtain colourful and complete traffic sign point clouds with high resolution. Numéro de notice : A2022-254 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12398 Date de publication en ligne : 05/03/2022 En ligne : https://doi.org/10.1111/phor.12398 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100217
in Photogrammetric record > vol 37 n° 177 (March 2022) . - pp 87 - 110[article]Using street view images to identify road noise barriers with ensemble classification model and geospatial analysis / Kai Zhang in Sustainable Cities and Society, vol 78 (March 2022)
![]()
[article]
Titre : Using street view images to identify road noise barriers with ensemble classification model and geospatial analysis Type de document : Article/Communication Auteurs : Kai Zhang, Auteur ; Zhen Qian, Auteur ; Yue Yang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103598 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] apprentissage profond
[Termes IGN] cartographie du bruit
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] distribution spatiale
[Termes IGN] image Streetview
[Termes IGN] lutte contre le bruit
[Termes IGN] milieu urbain
[Termes IGN] OpenStreetMap
[Termes IGN] planification urbaine
[Termes IGN] pollution acoustique
[Termes IGN] trafic routier
[Termes IGN] ville durableRésumé : (auteur) Road noise barriers (RNBs) are important urban infrastructures to relieve the harm of traffic noise pollution for citizens. Therefore, obtaining the spatial distribution characteristics of RNBs, such as precise positions and mileage, can be of great help for obtaining more accurate urban noise maps and assessing the quality of the urban living environment for sustainable urban development. However, an effective and efficient method for identifying RNBs and acquiring their attributes in large areas is scarce. This study constructs an ensemble classification model (ECM) to automatically identify RNBs at the city level based on Baidu Street View (BSV). Firstly, the bootstrap sampling method is proposed to build a street view image-based train set, where the effect of imbalanced categories of samples was reduced by adding confusing negative samples. Secondly, two state-of-the-art deep learning models, ResNet and DenseNet, are ensembled to construct an ECM based on the bagging framework. Finally, a post-processing method has been proposed based on geospatial analysis to eliminate street view images (SVIs) that are misclassified as RNBs. This study takes Suzhou, China as the study area to validate the proposed method. The model achieved an accuracy and F1-score of 0.98 and 0.90, respectively. The total mileage of the RNBs in Suzhou was 178,919 m. The results demonstrated the performance of the proposed RNBs identification framework. The significance of obtaining RNBs attributes for accelerating sustainable urban development has been demonstrated through the case of photovoltaic noise barriers (PVNBs). Numéro de notice : A2022-241 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.scs.2021.103598 Date de publication en ligne : 20/12/2021 En ligne : https://doi.org/10.1016/j.scs.2021.103598 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100167
in Sustainable Cities and Society > vol 78 (March 2022) . - n° 103598[article]Quantifying the shape of urban street trees and evaluating its influence on their aesthetic functions based on mobile lidar data / Tianyu Hu in ISPRS Journal of photogrammetry and remote sensing, vol 184 (February 2022)
![]()
[article]
Titre : Quantifying the shape of urban street trees and evaluating its influence on their aesthetic functions based on mobile lidar data Type de document : Article/Communication Auteurs : Tianyu Hu, Auteur ; Dengjie Wei, Auteur ; Yanjun Su, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 203 - 214 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] arbre urbain
[Termes IGN] canopée
[Termes IGN] Chine
[Termes IGN] couvert végétal
[Termes IGN] distribution spatiale
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Green area index
[Termes IGN] image panoramique
[Termes IGN] semis de points
[Termes IGN] système de numérisation mobileRésumé : (auteur) Street trees are important components of an urban green space and understanding and measuring their ecological and cultural services is crucial for assessing the quality of streets and managing urban environments. Currently, most studies mainly focus on evaluating the ecological services of street trees by measuring the amount of greenness, but how to evaluate their aesthetic functions through quantitative measurements of street trees remain unclear. To address this problem, we propose a method to assess the aesthetic functions of street trees by quantifying the shape of greenness inspired by assessments of skyline aesthetics. Using a state-of-the-art mobile mapping system, we collected downtown-wide lidar data and panoramic images in Jinzhou City, Hebei Province, China. We developed a method for extracting the canopy line from the mobile lidar data, and then identified two basic elements, peaks and gaps, from street canopy lines and extracted six indexes (i.e., richness of peaks, evenness of peaks, frequency of peaks, total length of gaps, evenness of gaps and frequency of gaps) to describe the fluctuations and continuities of street canopy lines. We analyzed the abundance and spatial distribution of these indexes together with survey responses on the streets’ aesthetics and found that most of them were significantly correlated with human perception of streets. Compared to indexes of amount of greenness (e.g., green volume and green view index), these shape indexes have stronger influences on the physical aesthetic beauty of street trees. These findings suggest that a comprehensive assessment of the aesthetic function of street trees should consider both shape and amount of greenness. This study provides a new perspective for the assessment of urban green spaces and can assist future urban greening planning and urban landscape management. Numéro de notice : A2022-105 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.01.002 Date de publication en ligne : 15/01/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.01.002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99602
in ISPRS Journal of photogrammetry and remote sensing > vol 184 (February 2022) . - pp 203 - 214[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022021 SL Revue Centre de documentation Revues en salle Disponible 081-2022023 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2022022 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A pipeline for automated processing of Corona KH-4 (1962-1972) stereo imagery / Sajid Ghuffar (2022)
![]()
Titre : A pipeline for automated processing of Corona KH-4 (1962-1972) stereo imagery Type de document : Article/Communication Auteurs : Sajid Ghuffar, Auteur ; Tobias Bolch, Auteur ; Ewelina Rupnik , Auteur ; Atanu Bhattacharya, Auteur
Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Année de publication : 2022 Projets : 1-Pas de projet / Importance : pp 1 - 24 Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] apprentissage profond
[Termes IGN] chaîne de traitement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] compensation par faisceaux
[Termes IGN] géométrie de l'image
[Termes IGN] géométrie épipolaire
[Termes IGN] glacier
[Termes IGN] Himalaya
[Termes IGN] image Corona
[Termes IGN] image panoramique
[Termes IGN] MNS SRTM
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle stéréoscopique
[Termes IGN] point d'appuiRésumé : (auteur) The Corona KH-4 reconnaissance satellite missions from 1962-1972 acquired panoramic stereo imagery with high spatial resolution of 1.8-7.5 m. The potential of 800,000+ declassified Corona images has not been leveraged due to the complexities arising from handling of panoramic imaging geometry, film distortions and limited availability of the metadata required for georeferencing of the Corona imagery. This paper presents Corona Stereo Pipeline (CoSP): A pipeline for processing of Corona KH-4 stereo panoramic imagery. CoSP utlizes a deep learning based feature matcher SuperGlue to automatically match features point between Corona KH-4 images and recent satellite imagery to generate Ground Control Points (GCPs). To model the imaging geometry and the scanning motion of the panoramic KH-4 cameras, a rigorous camera model consisting of modified collinearity equations with time dependent exterior orientation parameters is employed. The results show that using the entire frame of the Corona image, bundle adjustment using well-distributed GCPs results in an average standard deviation (SD) of less than 2 pixels. We evaluate fiducial marks on the Corona films and show that pre-processing the Corona images to compensate for film bending improves the accuracy. We further assess a polynomial epipolar resampling method for rectification of Corona stereo images. The distortion pattern of image residuals of GCPs and y-parallax in epipolar resampled images suggest that film distortions due to long term storage as likely cause of systematic deviations. Compared to the SRTM DEM, the Corona DEM computed using CoSP achieved a Normalized Median Absolute Deviation (NMAD) of elevation differences of ? 4m over an area of approx. 4000km2. We show that the proposed pipeline can be applied to sequence of complex scenes involving high relief and glacierized terrain and that the resulting DEMs can be used to compute long term glacier elevation changes over large areas. Numéro de notice : P2022-001 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : Préprint DOI : sans Date de publication en ligne : 09/01/2022 En ligne : https://arxiv.org/abs/2201.07756 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99614 Urban infrastructure audit: an effective protocol to digitize signalized intersections by mining street view images / Xiao Li in Cartography and Geographic Information Science, vol 49 n° 1 (January 2022)
PermalinkAutomatic registration of mobile mapping system Lidar points and panoramic-image sequences by relative orientation model / Ningning Zhu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 12 (December 2021)
PermalinkPermalinkFully automated pose estimation of historical images in the context of 4D geographic information systems utilizing machine learning methods / Ferdinand Maiwald in ISPRS International journal of geo-information, vol 10 n° 11 (November 2021)
PermalinkUrban land-use analysis using proximate sensing imagery: a survey / Zhinan Qiao in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)
PermalinkFlood depth mapping in street photos with image processing and deep neural networks / Bahareh Alizadeh Kharazi in Computers, Environment and Urban Systems, vol 88 (July 2021)
PermalinkSemantic-aware label placement for augmented reality in street view / Jianqing Jia in The Visual Computer, vol 37 n° 7 (July 2021)
PermalinkAutomated registration of SfM‐MVS multitemporal datasets using terrestrial and oblique aerial images / Luigi Parente in Photogrammetric record, vol 36 n° 173 (March 2021)
PermalinkExploiting multi-camera constraints within bundle block adjustment: an experimental comparison / Eleonora Maset (2021)
PermalinkGeometric computer vision: omnidirectional visual and remotely sensed data analysis / Pouria Babahajiani (2021)
Permalink