Descripteur
Termes IGN > imagerie > image radar > image radar moirée
image radar moiréeSynonyme(s)Interferogramme ;image SAR ;Image rso ;Image radar interférométrique Image par radar à antenne synthétiqueVoir aussi
|
Documents disponibles dans cette catégorie (555)


Etendre la recherche sur niveau(x) vers le bas
The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes / Anna Iglseder in International journal of applied Earth observation and geoinformation, vol 117 (March 2023)
![]()
[article]
Titre : The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes Type de document : Article/Communication Auteurs : Anna Iglseder, Auteur ; Markus Immitzer, Auteur ; Alena Dostalova, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 103131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] cartographie écologique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données Copernicus
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] habitat (nature)
[Termes IGN] habitat forestier
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] modèle numérique de surface
[Termes IGN] paysage forestier
[Termes IGN] protection de la biodiversité
[Termes IGN] site Natura 2000
[Termes IGN] Vienne (capitale Autriche)Résumé : (auteur) Mapping and monitoring of habitats are requirements for protecting biodiversity. In this study, we investigated the benefit of combining airborne (laser scanning, image-based point clouds) and satellite-based (Sentinel 1 and 2) data for habitat classification. We used a two level random forest 10-fold leave-location-out cross-validation workflow to model Natura 2000 forest and grassland habitat types on a 10 m pixel scale at two study sites in Vienna, Austria. We showed that models using combined airborne and satellite-based remote sensing data perform significantly better for forests than airborne or satellite-based data alone. For frequently occurring classes, we reached class accuracies with F1-scores from 0.60 to 0.87. We identified clear difficulties of correctly assigning rare classes with model-based classification. Finally, we demonstrated the potential of the workflow to identify errors in reference data and point to the opportunities for integration in habitat mapping and monitoring. Numéro de notice : A2023-128 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103131 Date de publication en ligne : 12/01/2023 En ligne : https://doi.org/10.1016/j.jag.2022.103131 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102512
in International journal of applied Earth observation and geoinformation > vol 117 (March 2023) . - n° 103131[article]A new strategy for improving the accuracy of forest aboveground biomass estimates in an alpine region based on multi-source remote sensing / Yali Zhang in GIScience and remote sensing, vol 60 n° 1 (2023)
![]()
[article]
Titre : A new strategy for improving the accuracy of forest aboveground biomass estimates in an alpine region based on multi-source remote sensing Type de document : Article/Communication Auteurs : Yali Zhang, Auteur ; Ni Wang, Auteur ; Yuliang Wang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2163574 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] biomasse forestière
[Termes IGN] carte forestière
[Termes IGN] Chine
[Termes IGN] données multisources
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] phénologie
[Termes IGN] puits de carbone
[Termes IGN] santé des forêtsRésumé : (auteur) Spatially explicit information on the distribution of dominant tree species groups and aboveground biomass (AGB) in forested areas is essential for developing targeted forest management and biodiversity conservation measures, as well as assessing forest carbon sequestration capacity. There is a shortage of continuously updated 30-m spatial resolution products for mapping dominant tree species groups. The vast majority of remote sensing-based AGB estimation approaches have relatively low accuracy for dominant tree species groups or forest types and are unsuitable for AGB modeling. Therefore, this study aims to develop an integrated framework that considers the phenological characteristics of different tree species to improve the mapping accuracies of forest dominant tree groups and corresponding AGB estimates. Thirty-meter resolution maps of dominant tree species groups were created using machine learning algorithms and phenological parameters. Features extracted from optical and radar images and phenological characteristics were used to construct AGB estimation models in a temporally consistent manner to improve the AGB estimation accuracy and perform dynamic AGB monitoring. The proposed method accurately characterized the dynamic distribution of the dominant tree species groups in the study area. The traditional AGB model that does not consider different forest types or species had an R2 value of 0.52, whereas the proposed model that considers phenology and forest types had an R2 value of 0.67. This result indicates that incorporating information on phenology and dominant species improves the accuracy of AGB estimations. The AGB in most regions was 30–55 t/ha, showing that the majority of the forests were young or middle-aged stands, and the areal percentage of AGB greater than 30 t/ha increased during the study period, suggesting an improvement in forest quality. Furthermore, the oak AGB was the highest, indicating that oak afforestation should be encouraged to enhance the carbon sequestration capacity of future forest ecosystems. The results provide new insights for researchers and managers to understand the trends of forest development and forest health, as well as technical information and a database for formulating more rational forest management strategies. Numéro de notice : A2023-121 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1080/15481603.2022.2163574 Date de publication en ligne : 03/01/2023 En ligne : https://doi.org/10.1080/15481603.2022.2163574 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102496
in GIScience and remote sensing > vol 60 n° 1 (2023) . - n° 2163574[article]Remote sensing techniques for water management and climate change monitoring in drought areas: case studies in Egypt and Tunisia / Lifan Ji in European journal of remote sensing, vol 56 n° 1 (2023)
![]()
[article]
Titre : Remote sensing techniques for water management and climate change monitoring in drought areas: case studies in Egypt and Tunisia Type de document : Article/Communication Auteurs : Lifan Ji, Auteur ; Yihao Shao, Auteur ; Jianjun Liu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 1 - 16 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] changement climatique
[Termes IGN] Egypte
[Termes IGN] gestion de l'eau
[Termes IGN] humidité du sol
[Termes IGN] image optique
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] réseau neuronal artificiel
[Termes IGN] stress hydrique
[Termes IGN] Tunisie
[Termes IGN] zone semi-arideRésumé : (auteur) This study focused on monitoring the water status of vegetation and soil by exploiting the synergy of optical and microwave satellite data with the aim of improving the knowledge of water cycle in cultivated lands in Egyptian Delta and Tunisian areas. Environmental analysis approaches based on optical and synthetic aperture radar data were carried out to set up the basis for future implementation of practical and cost-effective methods for sustainable water use in agriculture. Long-term behaviors of vegetation indices were thus analyzed between 2000 and 2018. By using SAR data from Sentinel-1, an Artificial Neural Network-based algorithm was implemented for estimating soil moisture and monthly maps for 2018 have been generated to be compared with information derived from optical indices. Moreover, a novel drought severity index was developed and applied to available data. The index was obtained by combining vegetation soil difference index, derived from optical data, and soil moisture content derived from SAR data. The proposed index was found capable of complementing optical and microwave sensitivity to drought-related parameters, although ground data are missing for correctly validating the results, by capturing drought patterns and their temporal evolution better than indices based only on microwave or optical data. Numéro de notice : A2023-103 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2022.2157335 Date de publication en ligne : 06/01/2023 En ligne : https://doi.org/10.1080/22797254.2022.2157335 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102430
in European journal of remote sensing > vol 56 n° 1 (2023) . - pp 1 - 16[article]Spatio-temporal patterns of wildfires in Siberia during 2001–2020 / Oleg Tomshin in Geocarto international, vol 37 n° 25 ([01/12/2022])
![]()
[article]
Titre : Spatio-temporal patterns of wildfires in Siberia during 2001–2020 Type de document : Article/Communication Auteurs : Oleg Tomshin, Auteur ; Vladimir Solovyev, Auteur Année de publication : 2022 Article en page(s) : pp 7339 - 7357 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] changement climatique
[Termes IGN] image radar moirée
[Termes IGN] image Terra-MODIS
[Termes IGN] incendie de forêt
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] occupation du sol
[Termes IGN] précipitation
[Termes IGN] réflectance de surface
[Termes IGN] Sibérie
[Termes IGN] température de l'airRésumé : (auteur) Siberia is one of the most fire-prone regions of northern Eurasia and also the region with the greatest warming in the Eastern Hemisphere over the last decades. In this study, spatiotemporal features of wildfires in Siberia and their recent trends and relationship with air temperature and precipitation during 2001–2020 were investigated. The main results show that the annual burned area (BA) in Siberia during the study period is 6.5 Mha with a non-significant positive trend (58 kha year−1, p = 0.49), but analysis of the spatial patterns revealed regions with significant trends in BA: negative in the south of Western Siberia (−17 kha year−1, p Numéro de notice : A2022-926 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2021.1973581 Date de publication en ligne : 06/09/2021 En ligne : https://doi.org/10.1080/10106049.2021.1973581 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102659
in Geocarto international > vol 37 n° 25 [01/12/2022] . - pp 7339 - 7357[article]Challenges and limitations of earthquake-induced building damage mapping techniques using remote sensing images : A systematic review / Sahar S. Matin in Geocarto international, Vol 37 n° 21 ([01/10/2022])
![]()
[article]
Titre : Challenges and limitations of earthquake-induced building damage mapping techniques using remote sensing images : A systematic review Type de document : Article/Communication Auteurs : Sahar S. Matin, Auteur ; Biswajeet Pradhan, Auteur Année de publication : 2022 Article en page(s) : pp 6186 - 6212 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] cartographie thématique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] déformation d'édifice
[Termes IGN] détection de changement
[Termes IGN] dommage matériel
[Termes IGN] données lidar
[Termes IGN] image optique
[Termes IGN] image radar moirée
[Termes IGN] secours d'urgence
[Termes IGN] séismeRésumé : (auteur) Assessing the extent and level of building damages is crucial to support post-earthquake rescue and relief activities. There is a large body of literature proposing novel frameworks for automating earthquake-induced building damage mapping using high-resolution remote sensing images. Yet, its deployment in real-world scenarios is largely limited to the manual interpretation of images. Although manual interpretation is costly and labor-intensive, it is preferred over automatic and semi-automatic building damage mapping frameworks such as machine learning and deep learning because of its reliability. Therefore, this review paper explores various automatic and semi-automatic building damage mapping techniques with a quest to understand the pros and cons of different methodologies to narrow the gap between research and practice. Further, the research gaps and opportunities are identified for the future development of real-world scenarios earthquake-induced building damage mapping. This review can serve as a guideline for researchers, decision-makers, and practitioners in the emergency management service domain. Numéro de notice : A2022-719 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1933213 Date de publication en ligne : 07/06/2021 En ligne : https://doi.org/10.1080/10106049.2021.1933213 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101651
in Geocarto international > Vol 37 n° 21 [01/10/2022] . - pp 6186 - 6212[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022211 SL Revue Centre de documentation Revues en salle Disponible DSNUNet: An improved forest change detection network by combining Sentinel-1 and Sentinel-2 images / Jiawei Jiang in Remote sensing, vol 14 n° 19 (October-1 2022)
PermalinkTowards a global seasonal and permanent reference water product from Sentinel-1/2 data for improved flood mapping / Sandro Martinis in Remote sensing of environment, vol 278 (September 2022)
PermalinkValidation of a corner reflector installation at Côte d’Azur multi-technique geodetic observatory / Xavier Collilieux in Advances in space research, vol 70 n° 2 (15 July 2022)
PermalinkFusion of GNSS and InSAR time series using the improved STRE model: applications to the San Francisco bay area and Southern California / Huineng Yan in Journal of geodesy, vol 96 n° 7 (July 2022)
PermalinkA dual-generator translation network fusing texture and structure features for SAR and optical image matching / Han Nie in Remote sensing, Vol 14 n° 12 (June-2 2022)
PermalinkFlood mapping using multi-temporal Sentinel-1 SAR images: A case study—Inaouene watershed from Northeast of Morocco / Brahim Benzougagh in Iranian Journal of Science and Technology - Transactions of Civil Engineering, vol 46 n° 2 (April 2022)
PermalinkGraph learning based on signal smoothness representation for homogeneous and heterogeneous change detection / David Alejandro Jimenez-Sierra in IEEE Transactions on geoscience and remote sensing, vol 60 n° 4 (April 2022)
PermalinkApprentissage profond pour l'imagerie SAR : du débruitage à l'interprétation de scène / Emanuele Dalsasso (2022)
PermalinkPermalinkStudying informativeness of satellite image texture for sea ice state retrieval using deep learning methods / Clément Fougerouse (2022)
Permalink