Descripteur



Etendre la recherche sur niveau(x) vers le bas
Aleatoric uncertainty estimation for dense stereo matching via CNN-based cost volume analysis / Max Mehltretter in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
![]()
[article]
Titre : Aleatoric uncertainty estimation for dense stereo matching via CNN-based cost volume analysis Type de document : Article/Communication Auteurs : Max Mehltretter, Auteur ; Christian Heipke, Auteur Année de publication : 2021 Article en page(s) : pp 63 - 75 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] appariement d'images
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] corrélation épipolaire dense
[Termes descripteurs IGN] couple stéréoscopique
[Termes descripteurs IGN] courbe épipolaire
[Termes descripteurs IGN] disparité
[Termes descripteurs IGN] effet de profondeur cinétique
[Termes descripteurs IGN] image RVB
[Termes descripteurs IGN] modèle d'incertitude
[Termes descripteurs IGN] modèle stochastique
[Termes descripteurs IGN] voxelRésumé : (auteur) Motivated by the need to identify erroneous disparity estimates, various methods for the estimation of aleatoric uncertainty in the context of dense stereo matching have been presented in recent years. Especially, the introduction of deep learning based methods and the accompanying significant improvement in accuracy have greatly increased the popularity of this field. Despite this remarkable development, most of these methods rely on features learned from disparity maps only, neglecting the corresponding 3-dimensional cost volumes. However, conventional hand-crafted methods have already demonstrated that the additional information contained in such cost volumes are beneficial for the task of uncertainty estimation. In this paper, we combine the advantages of deep learning and cost volume based features and present a new Convolutional Neural Network (CNN) architecture to directly learn features for the task of aleatoric uncertainty estimation from volumetric 3D data. Furthermore, we discuss and apply three different uncertainty models to train our CNN without the need to provide ground truth for uncertainty. In an extensive evaluation on three datasets using three common dense stereo matching methods, we investigate the effects of these uncertainty models and demonstrate the generality and state-of-the-art accuracy of the proposed method. Numéro de notice : A2021-012 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.003 date de publication en ligne : 18/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.003 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96415
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 63 - 75[article]Automatic building footprint extraction from UAV images using neural networks / Zoran Kokeza in Geodetski vestnik, vol 64 n° 4 (December 2020 - February 2021)
![]()
[article]
Titre : Automatic building footprint extraction from UAV images using neural networks Type de document : Article/Communication Auteurs : Zoran Kokeza, Auteur ; Miroslav Vujasinović, Auteur ; Miro Govedarica, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 545 - 561 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] Bosnie
[Termes descripteurs IGN] cartographie cadastrale
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] détection du bâti
[Termes descripteurs IGN] empreinte
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image RVB
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] orthoimage
[Termes descripteurs IGN] zone d'intérêtRésumé : (Auteur) Up-to-date cadastral maps are crucial for urban planning. Creating those maps with the classical geodetic methods is expensive and time-consuming. Emerge of Unmanned Aerial Vehicles (UAV) made a possibility for quick acquisition of data with much more details than it was possible before. The topic of the research refers to the challenges of automatic extraction of building footprints on high-resolution orthophotos. The objectives of this study were as follows: (1) to test the possibility of using different publicly available datasets (Tanzania, AIRS and Inria) for neural network training and then test the generalisation capability of the model on the Area Of Interest (AOI); (2) to evaluate the effect of the normalised digital surface model (nDSM) on the results of neural network training and implementation. Evaluation of the results shown that the models trained on the Tanzania (IoU 36.4%), AIRS (IoU 64.4%) and Inria (IoU 7.4%) datasets doesn't satisfy the requested accuracy to update cadastral maps in study area. Much better results are achieved in the second part of the study, where the training of the neural network was done on tiles (256x256) of the orthophoto of AOI created from data acquired using UAV. A combination of RGB orthophoto with nDSM resulted in a 2% increase of IoU, achieving the final IoU of over 90%. Numéro de notice : A2020-777 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.15292/geodetski-vestnik.2020.04.545-561 date de publication en ligne : 26/10/2020 En ligne : http://doi.org/10.15292/geodetski-vestnik.2020.04.545-561 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96706
in Geodetski vestnik > vol 64 n° 4 (December 2020 - February 2021) . - pp 545 - 561[article]Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks / Felix Schiefer in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
![]()
[article]
Titre : Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks Type de document : Article/Communication Auteurs : Felix Schiefer, Auteur ; Teja Kattenborn, Auteur ; Annett Frick, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 205-215 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] arbre (flore)
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] espèce végétale
[Termes descripteurs IGN] Forêt-Noire, massif de la
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image RVB
[Termes descripteurs IGN] inventaire forestier (techniques et méthodes)
[Termes descripteurs IGN] inventaire forestier local
[Termes descripteurs IGN] segmentation sémantique
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) The use of unmanned aerial vehicles (UAVs) in vegetation remote sensing allows a time-flexible and cost-effective acquisition of very high-resolution imagery. Still, current methods for the mapping of forest tree species do not exploit the respective, rich spatial information. Here, we assessed the potential of convolutional neural networks (CNNs) and very high-resolution RGB imagery from UAVs for the mapping of tree species in temperate forests. We used multicopter UAVs to obtain very high-resolution ( Numéro de notice : A2020-706 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.015 date de publication en ligne : 03/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.015 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96236
in ISPRS Journal of photogrammetry and remote sensing > vol 170 (December 2020) . - pp 205-215[article]Textural classification of remotely sensed images using multiresolution techniques / Rizwan Ahmed Ansari in Geocarto international, vol 35 n° 14 ([15/10/2020])
![]()
[article]
Titre : Textural classification of remotely sensed images using multiresolution techniques Type de document : Article/Communication Auteurs : Rizwan Ahmed Ansari, Auteur ; Krishna Mohan Buddhiraju, Auteur ; Avik Bhattacharya, Auteur Année de publication : 2020 Article en page(s) : pp 1580 - 1602 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] analyse multirésolution
[Termes descripteurs IGN] analyse texturale
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] distance euclidienne
[Termes descripteurs IGN] image optique
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image RVB
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] texture d'image
[Termes descripteurs IGN] transformation en ondelettesRésumé : (auteur) Multiresolution analysis (MRA) methods have been successfully used in texture analysis. Texture analysis is widely discussed in literature, but most of the methods which do not employ multiresolution strategy cannot exploit the fact that texture occurs at various spatial scales. This paper proposes a methodology to identify different classes in satellite images using texture features from newly developed multiresolution methods. The proposed method is tested on remotely sensed optical images and a Pauli RGB decomposed version of synthetic aperture radar image. The textural information is extracted at various scales and in different directions from curvelet and contourlet transforms. The results are compared with wavelet-based features. Accuracy assessment is performed and comparative analysis is carried out using minimum distance to mean, support vector machine and random forest classifiers. It is found that the proposed method shows better class discriminating power and classification capability as compared to existing wavelet-based method. Numéro de notice : A2020-618 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1581263 date de publication en ligne : 15/04/2019 En ligne : https://doi.org/10.1080/10106049.2019.1581263 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95994
in Geocarto international > vol 35 n° 14 [15/10/2020] . - pp 1580 - 1602[article]3D hand mesh reconstruction from a monocular RGB image / Hao Peng in The Visual Computer, vol 36 n° 10 - 12 (October 2020)
![]()
[article]
Titre : 3D hand mesh reconstruction from a monocular RGB image Type de document : Article/Communication Auteurs : Hao Peng, Auteur ; Chuhua Xian, Auteur ; Yunbo Zhang, Auteur Année de publication : 2020 Article en page(s) : pp pages2227 - 2239 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] estimation de pose
[Termes descripteurs IGN] image de synthèse
[Termes descripteurs IGN] image RVB
[Termes descripteurs IGN] maillage
[Termes descripteurs IGN] modélisation 3D
[Termes descripteurs IGN] réalité augmentée
[Termes descripteurs IGN] réalité virtuelle
[Termes descripteurs IGN] reconstruction 3D
[Termes descripteurs IGN] reconstruction d'objet
[Termes descripteurs IGN] vision monoculaireRésumé : (auteur) Most of the existing methods for 3D hand analysis based on RGB images mainly focus on estimating hand keypoints or poses, which cannot capture geometric details of the 3D hand shape. In this work, we propose a novel method to reconstruct a 3D hand mesh from a single monocular RGB image. Different from current parameter-based or pose-based methods, our proposed method directly estimates the 3D hand mesh based on graph convolution neural network (GCN). Our network consists of two modules: the hand localization and mask generation module, and the 3D hand mesh reconstruction module. The first module, which is a VGG16-based network, is applied to localize the hand region in the input image and generate the binary mask of the hand. The second module takes the high-order features from the first and uses a GCN-based network to estimate the coordinates of each vertex of the hand mesh and reconstruct the 3D hand shape. To achieve better accuracy, a novel loss based on the differential properties of the discrete mesh is proposed. We also use professional software to create a large synthetic dataset that contains both ground truth 3D hand meshes and poses for training. To handle the real-world data, we use the CycleGAN network to transform the data domain of real-world images to that of our synthesis dataset. We demonstrate that our method can produce accurate 3D hand mesh and achieve an efficient performance for real-time applications. Numéro de notice : A2020-596 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-020-01908-3 date de publication en ligne : 14/07/2020 En ligne : https://doi.org/10.1007/s00371-020-01908-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95936
in The Visual Computer > vol 36 n° 10 - 12 (October 2020) . - pp pages2227 - 2239[article]Trajectory drift–compensated solution of a stereo RGB-D mapping system / Shengjun Tang in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 6 (June 2020)
PermalinkAutomatic extraction of road intersection points from USGS historical map series using deep convolutional neural networks / Mahmoud Saeedimoghaddam in International journal of geographical information science IJGIS, vol 34 n° 5 (May 2020)
PermalinkA review of techniques for 3D reconstruction of indoor environments / Zhizhong Kang in ISPRS International journal of geo-information, vol 9 n° 5 (May 2020)
PermalinkShrub biomass estimates in former burnt areas using Sentinel 2 images processing and classification / Jose Aranha in Forests, vol 11 n° 5 (May 2020)
PermalinkAbove-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging / Bo Li in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
PermalinkMultichannel Pulse-Coupled Neural Network-Based Hyperspectral Image Visualization / Puhong Duan in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
PermalinkIntegration of remote sensing and GIS to extract plantation rows from a drone-based image point cloud digital surface model / Nadeem Fareed in ISPRS International journal of geo-information, vol 9 n° 3 (March 2020)
PermalinkPlant survival monitoring with UAVs and multispectral data in difficult access afforested areas / Maria Luz Gil-Docampo in Geocarto international, vol 35 n° 2 ([01/02/2020])
PermalinkRegional-scale forest mapping over fragmented landscapes using global forest products and Landsat time series classification / Viktor Myroniuk in Remote sensing, vol 12 n° 1 (January 2020)
PermalinkApplication of machine learning techniques for evidential 3D perception, in the context of autonomous driving / Edouard Capellier (2020)
Permalink