Descripteur
Documents disponibles dans cette catégorie (1380)


Etendre la recherche sur niveau(x) vers le bas
Amazon forest spectral seasonality is consistent across sensor resolutions and driven by leaf demography / Nathan B. Gonçalves in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
![]()
[article]
Titre : Amazon forest spectral seasonality is consistent across sensor resolutions and driven by leaf demography Type de document : Article/Communication Auteurs : Nathan B. Gonçalves, Auteur ; Ricardo Dalagnol, Auteur ; Jin Wu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 93 - 104 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Amazonie
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] forêt tropicale
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-OLI
[Termes IGN] image proche infrarouge
[Termes IGN] image Terra-MODIS
[Termes IGN] indice de végétation
[Termes IGN] Leaf Area Index
[Termes IGN] réflectance spectrale
[Termes IGN] sécheresse
[Termes IGN] variation saisonnièreRésumé : (Auteur) Controversy surrounds the reported dry season greening of the Central Amazon forests based on the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS). As the solar zenith angle decreases during the dry season, it affects the sub-pixel shade content and artificially increases Near-infrared (NIR) reflectance and EVI. MODIS' coarse resolution also creates a challenge for cloud and terrain filtering. To reduce these artifacts and then validate MODIS seasonal spectral patterns we use 16 years of 1 km resolution MODIS-MAIAC (Multi-Angle Implementation of Atmospheric Correction) images, corrected to a nadir view and 45° solar zenith angle, together with an improved cloud filter. Then we show that the 30 m Landsat-8 Operational Land Imager (OLI) surface reflectance over two Landsat scenes provides independent evidence supporting the MODIS-MAIAC seasonality for EVI, NIR, and GCC (an additional important vegetation index, green chromatic coordinate). Our empirical method for controlling for sun-sensor geometry effects in Landsat scenes encompasses the use of seasonally distinct images that have similar solar zenith angles and cloud-free pixels on flat uplands having the same phase angle. We extended this validation to nine Amazon sub-basins comprising ∼546 Landsat-8 images. Our study shows that the dry-season green-up pattern observed by MODIS is corroborated by Landsat-8, and is independent of satellite data artifacts. To investigate the mechanisms driving these seasonal changes we further used Central Amazon tower-mounted RGB cameras providing a 4-year record at the Amazon Tall Tower (ATTO, 2°8′36″S, 59°0′2″W) and a 7-year record at the Manaus k34 tower (2°36′33″ S, 60°12′33″W) to obtain monthly upper canopy green leaf cover (a proxy for Leaf Area Index - LAI) and monthly leaf age class abundances (based on the age since leaf flushing, by crown). These were compared to seasonal patterns of GCC and EVI in small MODIS-MAIAC windows centered on each tower. MODIS-MAIAC GCC was positively correlated with newly flushed leaves (R2 = 0.76 and 0.44 at ATTO and k34, respectively). EVI correlated strongly with the abundance of mature leaves (R2 = 0.82 and 0.80) but was poorly correlated with LAI (R2 = 0.20 and 0.41, respectively). Therefore, seasonal spectral patterns in the Central Amazon are likely controlled by leaf age variation, not quantity of leaf area. Numéro de notice : A2023-065 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.001 Date de publication en ligne : 04/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.001 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102423
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 93 - 104[article]Large-scale burn severity mapping in multispectral imagery using deep semantic segmentation models / Xikun Hu in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
![]()
[article]
Titre : Large-scale burn severity mapping in multispectral imagery using deep semantic segmentation models Type de document : Article/Communication Auteurs : Xikun Hu, Auteur ; Puzhao Zhang, Auteur ; Yifang Ban, Auteur Année de publication : 2023 Article en page(s) : pp 228 - 240 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] dommage
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] incendie de forêt
[Termes IGN] jeu de données localisées
[Termes IGN] segmentation sémantique
[Termes IGN] surveillance forestière
[Termes IGN] zone sinistréeRésumé : (auteur) Nowadays Earth observation satellites provide forest fire authorities and resource managers with spatial and comprehensive information for fire stabilization and recovery. Burn severity mapping is typically performed by classifying bi-temporal indices (e.g., dNBR, and RdNBR) using thresholds derived from parametric models incorporating field-based measurements. Analysts are currently expending considerable manual effort using prior knowledge and visual inspection to determine burn severity thresholds. In this study, we aim to employ highly automated approaches to provide spatially explicit damage level estimates. We first reorganize a large-scale Landsat-based bi-temporal burn severity assessment dataset (Landsat-BSA) by visual data cleaning based on annotated MTBS data (approximately 1000 major fire events in the United States). Then we apply state-of-the-art deep learning (DL) based methods to map burn severity based on the Landsat-BSA dataset. Experimental results emphasize that multi-class semantic segmentation algorithms can approximate the threshold-based techniques used extensively for burn severity classification. UNet-like models outperform other region-based CNN and Transformer-based models and achieve accurate pixel-wise classification results. Combined with the online hard example mining algorithm to reduce class imbalance issue, Attention UNet achieves the highest mIoU (0.78) and the highest Kappa coefficient close to 0.90. The bi-temporal inputs with ancillary spectral indices work much better than the uni-temporal multispectral inputs. The restructured dataset will be publicly available and create opportunities for further advances in remote sensing and wildfire communities. Numéro de notice : A2023-122 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.026 Date de publication en ligne : 11/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.026 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102498
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 228 - 240[article]Decision tree-based machine learning models for above-ground biomass estimation using multi-source remote sensing data and object-based image analysis / Haifa Tamiminia in Geocarto international, vol 38 n° inconnu ([01/01/2023])
![]()
[article]
Titre : Decision tree-based machine learning models for above-ground biomass estimation using multi-source remote sensing data and object-based image analysis Type de document : Article/Communication Auteurs : Haifa Tamiminia, Auteur ; Bahram Salehi, Auteur ; Masoud Mahdianpari, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse d'image orientée objet
[Termes IGN] biomasse aérienne
[Termes IGN] boosting adapté
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification pixellaire
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image Landsat
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] New York (Etats-Unis ; état)
[Termes IGN] réserve naturelleRésumé : (auteur) Forest above-ground biomass (AGB) estimation provides valuable information about the carbon cycle. Thus, the overall goal of this paper is to present an approach to enhance the accuracy of the AGB estimation. The main objectives are to: 1) investigate the performance of remote sensing data sources, including airborne light detection and ranging (LiDAR), optical, SAR, and their combination to improve the AGB predictions, 2) examine the capability of tree-based machine learning models, and 3) compare the performance of pixel-based and object-based image analysis (OBIA). To investigate the performance of machine learning models, multiple tree-based algorithms were fitted to predictors derived from airborne LiDAR data, Landsat, Sentinel-2, Sentinel-1, and PALSAR-2/PALSAR SAR data collected within New York’s Adirondack Park. Combining remote sensing data from multiple sources improved the model accuracy (RMSE: 52.14 Mg ha−1 and R2: 0.49). There was no significant difference among gradient boosting machine (GBM), random forest (RF), and extreme gradient boosting (XGBoost) models. In addition, pixel-based and object-based models were compared using the airborne LiDAR-derived AGB raster as a training/testing sample. The OBIA provided the best results with the RMSE of 33.77 Mg ha−1 and R2 of 0.81 for the combination of optical and SAR data in the GBM model. Numéro de notice : A2022-331 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/10106049.2022.2071475 Date de publication en ligne : 27/04/2022 En ligne : https://doi.org/10.1080/10106049.2022.2071475 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100607
in Geocarto international > vol 38 n° inconnu [01/01/2023][article]Exploring the addition of airborne Lidar-DEM and derived TPI for urban land cover and land use classification and mapping / Clement E. Akumu in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 1 (January 2023)
![]()
[article]
Titre : Exploring the addition of airborne Lidar-DEM and derived TPI for urban land cover and land use classification and mapping Type de document : Article/Communication Auteurs : Clement E. Akumu, Auteur ; Sam Dennis, Auteur Année de publication : 2023 Article en page(s) : pp19 - 26 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] carte d'occupation du sol
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données topographiques
[Termes IGN] image Landsat-OLI
[Termes IGN] milieu urbain
[Termes IGN] MNS lidar
[Termes IGN] semis de points
[Termes IGN] Tennessee (Etats-Unis)
[Termes IGN] utilisation du solRésumé : (auteur) The classification and mapping accuracy of urban land cover and land use has always been a critical topic and several auxiliary data have been used to improve the classification accuracy. However, to the best of our knowledge, there is limited knowledge of the addition of airborne Light Detection and Ranging (lidar)-Digital Elevation Model (DEM) and Topographic Position Index (TPI) for urban land cover and land use classification and mapping. The aim of this study was to explore the addition of airborne lidar-DEM and derived TPI to reflect data of Landsat Operational Land Imager (OLI) in improving the classification accuracy of urban land cover and land use map- ping. Specifically, this study explored the mapping accuracies of urban land cover and land use classifications derived using: 1) standalone Landsat OLI satellite data; 2) Landsat OLI with acquired airborne lidar-DEM ; 3) Landsat OLI with TPI ; and 4) Landsat OLI with airborne lidar-DEM and derived TPI. The results showed that the addition of airborne lidar-DEM and TPI yielded the best overall urban land cover and land use classification accuracy of about 88%. The findings in this study demonstrated that both lidar-DEM and TPI had a positive impact in improving urban land cover and land use classification. Numéro de notice : A2023-045 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00029R2 Date de publication en ligne : 01/01/2023 En ligne : https://doi.org/10.14358/PERS.21-00029R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102354
in Photogrammetric Engineering & Remote Sensing, PERS > vol 89 n° 1 (January 2023) . - pp19 - 26[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2023011 SL Revue Centre de documentation Revues en salle Disponible How to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data / Rongfang Lyu in Sustainable Cities and Society, vol 88 (January 2023)
![]()
[article]
Titre : How to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data Type de document : Article/Communication Auteurs : Rongfang Lyu, Auteur ; Jili Pang, Auteur ; Xiaolei Tian, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 104287 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Chine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] espace vert
[Termes IGN] hauteur du bâti
[Termes IGN] ilot thermique urbain
[Termes IGN] image captée par drone
[Termes IGN] image Landsat-OLI
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] Leaf Area Index
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] optimisation (mathématiques)
[Termes IGN] paysage urbain
[Termes IGN] plan d'eau
[Termes IGN] planification urbaine
[Termes IGN] réseau bayesien
[Termes IGN] semis de points
[Termes IGN] température au solRésumé : (auteur) The systematical exploration of how two-dimensional (2D) and three-dimensional (3D) features of urban landscapes influence land surface temperature (LST) is still limited. Therefore, we investigated the influence of three main urban landscapes—urban green space, impervious land, and water bodies on LST, with a particular focus on the 3D vegetation metrics of green volume (GV) and leaf area index (LAI). We used Yinchuan City, China, as a case study. We quantified the impacts of various 2D/3D metrics of the three landscape types on LST using a random forest analysis with multiple sources, including Unmanned Aerial Vehicle (UAV) and remote sensing images. We then generated a Bayesian Network (BN) model to identify the optimal configurations for each landscape type. We found that using 11 of the 31 metrics considered, our model could explain 81.8% of the observed variance in LST of Yinchuan City. Among those, water body metrics were the most important, followed by vegetation abundance, impervious land metrics, and landscape pattern of urban green space. The mean classification error of the BN model was only 22.9%. We suggest that this makes the BN model a promising support tool for urban planning with a view to urban heat island mitigation. Our findings also stress the importance of considering both 2D and 3D features when considering urban cooling strategies. Numéro de notice : A2023-007 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1016/j.scs.2022.104287 Date de publication en ligne : 02/11/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104287 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102095
in Sustainable Cities and Society > vol 88 (January 2023) . - n° 104287[article]A new strategy for improving the accuracy of forest aboveground biomass estimates in an alpine region based on multi-source remote sensing / Yali Zhang in GIScience and remote sensing, vol 60 n° 1 (2023)
PermalinkThe cellular automata approach in dynamic modelling of land use change detection and future simulations based on remote sensing data in Lahore Pakistan / Muhammad Nasar Ahmad in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 1 (January 2023)
PermalinkHarvested area did not increase abruptly-how advancements in satellite-based mapping led to erroneous conclusions / Johannes Breidenbach in Annals of Forest Science, vol 79 n° 1 (2022)
PermalinkIntegration of geospatial technologies with multiple regression model for urban land use land cover change analysis and its impact on land surface temperature in Jimma City, southwestern Ethiopia / Mitiku Badasa Moisa in Applied geomatics, vol 14 n° 4 (December 2022)
PermalinkMapping impervious surfaces with a hierarchical spectral mixture analysis incorporating endmember spatial distribution / Zhenfeng Shao in Geo-spatial Information Science, vol 25 n° 4 (December 2022)
PermalinkPotentials and limitations of NFIs and remote sensing in the assessment of harvest rates: a reply to Breidenbach et al. / Guido Ceccherini in Annals of Forest Science, vol 79 n° 1 (2022)
PermalinkThe simulation and prediction of land surface temperature based on SCP and CA-ANN models using remote sensing data: A case study of Lahore / Muhammad Nasar Ahmad in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 12 (December 2022)
PermalinkExploring the influencing factors in identifying soil texture classes using multitemporal Landsat-8 and Sentinel-2 data / Yanan Zhou in Remote sensing, vol 14 n° 21 (November-1 2022)
PermalinkDriving factors of urban sprawl in the Romanian plain. Regional and temporal modelling using logistic regression / Ines Grigorescu in Geocarto international, vol 37 n° 24 ([20/10/2022])
PermalinkDeep learning high resolution burned area mapping by transfer learning from Landsat-8 to PlanetScope / V.S. Martins in Remote sensing of environment, vol 280 (October 2022)
Permalink