Descripteur


Etendre la recherche sur niveau(x) vers le bas
Assessing spatial-temporal evolution processes and driving forces of karst rocky desertification / Fei Chen in Geocarto international, vol 36 n° 3 ([01/03/2021])
![]()
[article]
Titre : Assessing spatial-temporal evolution processes and driving forces of karst rocky desertification Type de document : Article/Communication Auteurs : Fei Chen, Auteur ; Shijie Wang, Auteur ; Xiaoyong Bai, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 262 - 280 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] carte d'utilisation du sol
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] classification et arbre de régression
[Termes descripteurs IGN] désertification
[Termes descripteurs IGN] données spatiotemporelles
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image Landsat-TM
[Termes descripteurs IGN] karst
[Termes descripteurs IGN] lithologieRésumé : (auteur) Karst Rocky Desertification (KRD) has become the most serious ecological disaster in Southwest China. We used the data of Thematic Mapper (TM) images from 1990, 1995, 2000, 2004, and 2011 and the 2016 Operational Land Imager (OLI) image. These sensing images were pre-processed by removing non-karst areas based on lithology and cutting away the land types impossibly generating KRD from land use maps. Then, we used a Classification And Regression Tree (CART) to classify the KRD. We want to improve the interpretation accuracy of KRD through the above steps. The results were as follows: (1) The KRD experiences the evolution process of ‘first deterioration and then improvement’. The rate is −4.94 km2.a−1 over a period of 1990 to 2004, and the rate is 36.48 km2.a−1 from 2004 to 2016; (2) The most influential factors causing KRD formation are the lithology and the resident population density, with contribution rates of 30.17% and 25.86%, respectively. Numéro de notice : A2021-140 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1595175 date de publication en ligne : 18/07/2019 En ligne : https://doi.org/10.1080/10106049.2019.1595175 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97036
in Geocarto international > vol 36 n° 3 [01/03/2021] . - pp 262 - 280[article]Performance evaluation of artificial neural networks for natural terrain classification / Perpetual Hope Akwensi in Applied geomatics, vol 13 n° 1 (March 2021)
![]()
[article]
Titre : Performance evaluation of artificial neural networks for natural terrain classification Type de document : Article/Communication Auteurs : Perpetual Hope Akwensi, Auteur ; Eric Thompson Brantson, Auteur ; Johanna Ngula Niipele, Auteur ; et al., Auteur Année de publication : 2021 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Afrique occidentale
[Termes descripteurs IGN] classification par nuées dynamiques
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] fonction de base radiale
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] inventaire de la végétation
[Termes descripteurs IGN] réalité de terrain
[Termes descripteurs IGN] regroupement de données
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] segmentation d'imageRésumé : (auteur) Remotely sensed image segmentation and classification form a very important part of remote sensing which involves geo-data processing and analysis. Artificial neural networks (ANNs) are powerful machine learning approaches that have been successfully implemented in numerous fields of study. There exist many kinds of neural networks and there is no single efficient approach for resolving all geospatial problems. Therefore, this research aims at investigating and evaluating the efficiency of three ANN approaches, namely, backpropagation neural network (BPNN), radial basis function neural network (RBFNN), and Elman backpropagation recurrent neural network (EBPRNN) using multi-spectral satellite images for terrain feature classification. Additionally, there has been close to no application of EBPRNN in modeling multi-spectral satellite images even though they also contain patterns. The efficiency of the three tested approaches is presented using the kappa coefficient, user’s accuracy, producer’s accuracy, overall accuracy, classification error, and computational simulation time. The study demonstrated that all the three ANN models achieved the aim of pattern identification, segmentation, and classification. This paper also discusses the observations of increasing sample sizes as inputs in the various ANN models. It was concluded that RBFNN’s computational time increases with increasing sample size and consequently increasing the number of hidden neurons; BPNN on overall attained the highest accuracy compared to the other models; EBPRNN’s accuracy increases with increasing sample size, hence a promising and perhaps an alternative choice to BPNN and RBFNN if very large datasets are involved. Based on the performance metrics used in this study, BPNN is the best model out of the three evaluated ANN models. Numéro de notice : A2021-223 Affiliation des auteurs : non IGN Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s12518-021-00360-9 date de publication en ligne : 13/02/2021 En ligne : https://doi.org/10.1007/s12518-021-00360-9 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97194
in Applied geomatics > vol 13 n° 1 (March 2021)[article]Geo-spatially modelling dengue epidemics in urban cities: a case study of Lahore, Pakistan / Muhammad Imran in Geocarto international, vol 36 n° 2 ([01/02/2021])
![]()
[article]
Titre : Geo-spatially modelling dengue epidemics in urban cities: a case study of Lahore, Pakistan Type de document : Article/Communication Auteurs : Muhammad Imran, Auteur ; Yasra Hamid, Auteur ; Abeer Mazher, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 197 - 211 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] diptère
[Termes descripteurs IGN] image Landsat
[Termes descripteurs IGN] maladie tropicale
[Termes descripteurs IGN] modélisation spatiale
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] Pakistan
[Termes descripteurs IGN] régression géographiquement pondérée
[Termes descripteurs IGN] régression logistique
[Termes descripteurs IGN] risque sanitaire
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] zone intertropicale
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) The study objective is to predict the epidemiological impact of dengue fever arbovirosis in urban tropical areas of Pakistan. To do so, we used the GPS-based data of the Aedes larvae collected during 2014–2015 in Lahore. We developed a Geographically Weighted Logistic Regression (GWLR) model for Geospatially predicting larvae presence or absence in Lahore. Data on rainfall, temperature are included along with time series of the normalized difference vegetation index (NDVI) derived from Landsat imagery. We observed a high spatial variability of the GWLR parameter estimates of these variables in the study area. The GWLR model significantly (R2a = 0.78) explained the presence or absence of Aedes larvae with temperature, rainfall and NDVI variables in South and Southeast of the study area. In the North and North-West, however, GWLR relationships were observed weak in highly populated areas. Interpolating GWLR coefficients generate more accurate maps of Aedes larvae presence or absence. Numéro de notice : A2021-118 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1614100 date de publication en ligne : 10/06/2020 En ligne : https://doi.org/10.1080/10106049.2019.1614100 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96932
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 197 - 211[article]Monitoring the spatiotemporal dynamics of urban green space and Its impacts on thermal environment in Shenzhen city from 1978 to 2018 with remote sensing data / Yue Liu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 2 (February 2021)
![]()
[article]
Titre : Monitoring the spatiotemporal dynamics of urban green space and Its impacts on thermal environment in Shenzhen city from 1978 to 2018 with remote sensing data Type de document : Article/Communication Auteurs : Yue Liu, Auteur ; Hui Li, Auteur ; Peng Gao, Auteur ; Cheng Zhong, Auteur Année de publication : 2021 Article en page(s) : pp 81 - 89 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] croissance urbaine
[Termes descripteurs IGN] données spatiotemporelles
[Termes descripteurs IGN] dynamique spatiale
[Termes descripteurs IGN] espace vert
[Termes descripteurs IGN] ilot thermique urbain
[Termes descripteurs IGN] image Landsat
[Termes descripteurs IGN] impact sur l'environnement
[Termes descripteurs IGN] Shenzhen
[Termes descripteurs IGN] urbanismeRésumé : (Auteur) In a developing city, urban green space (UGS) plays an increasingly significant role in improving the urban environment and beautifying the urban landscape. In the meantime, UGS has been substantially and frequently interfered with by human activities. Taking Shenzhen city (a great metropolis of China) as an example, this study investigated the spatio-temporal dynamics of UGS and its influence on the urban thermal environment with Landsat images. From 1978 to 2018, all croplands and more than 50% of water bodies disappeared, while the built-up area increased more than 6 times. The rapid expansion of impervious surface and loss of UGS led to the spread of a surface urban heat island. The study shows that UGS has a significantly mitigating impact on urban land surface temperature, with cold islands mainly located at city parks. The results will be of great significance for improving UGS management, alleviating the urban heat island effect, and establishing a sustainable eco-environment. Numéro de notice : A2021-097 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.2.81 date de publication en ligne : 01/02/2021 En ligne : https://doi.org/10.14358/PERS.87.2.81 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97040
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 2 (February 2021) . - pp 81 - 89[article]The use of deep machine learning for the automated selection of remote sensing data for the determination of areas of arable land degradation processes distribution / Dimitri I. Rukhovitch in Remote sensing, vol 13 n° 1 (January 2021)
![]()
[article]
Titre : The use of deep machine learning for the automated selection of remote sensing data for the determination of areas of arable land degradation processes distribution Type de document : Article/Communication Auteurs : Dimitri I. Rukhovitch, Auteur ; Polina V. Koroleva, Auteur ; Danila D. Rukhovitch, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 155 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] dégradation des sols
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] érosion
[Termes descripteurs IGN] image Landsat
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] Russie
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] système d'information géographiqueRésumé : (auteur) Soil degradation processes are widespread on agricultural land. Ground-based methods for detecting degradation require a lot of labor and time. Remote methods based on the analysis of vegetation indices can significantly reduce the volume of ground surveys. Currently, machine learning methods are increasingly being used to analyze remote sensing data. In this paper, the task is set to apply deep machine learning methods and methods of vegetation indices calculation to automate the detection of areas of soil degradation development on arable land. In the course of the work, a method was developed for determining the location of degraded areas of soil cover on arable fields. The method is based on the use of multi-temporal remote sensing data. The selection of suitable remote sensing data scenes is based on deep machine learning. Deep machine learning was based on an analysis of 1028 scenes of Landsats 4, 5, 7 and 8 on 530 agricultural fields. Landsat data from 1984 to 2019 was analyzed. Dataset was created manually for each pair of “Landsat scene”/“agricultural field number”(for each agricultural field, the suitability of each Landsat scene was assessed). Areas of soil degradation were calculated based on the frequency of occurrence of low NDVI values over 35 years. Low NDVI values were calculated separately for each suitable fragment of the satellite image within the boundaries of each agricultural field. NDVI values of one-third of the field area and lower than the other two-thirds were considered low. During testing, the method gave 12.5% of type I errors (false positive) and 3.8% of type II errors (false negative). Independent verification of the method was carried out on six agricultural fields on an area of 713.3 hectares. Humus content and thickness of the humus horizon were determined in 42 ground-based points. In arable land degradation areas identified by the proposed method, the probability of detecting soil degradation by field methods was 87.5%. The probability of detecting soil degradation by ground-based methods outside the predicted regions was 3.8%. The results indicate that deep machine learning is feasible for remote sensing data selection based on a binary dataset. This eliminates the need for intermediate filtering systems in the selection of satellite imagery (determination of clouds, shadows from clouds, open soil surface, etc.). Direct selection of Landsat scenes suitable for calculations has been made. It allows automating the process of constructing soil degradation maps. Numéro de notice : A2021-074 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010155 date de publication en ligne : 05/01/2021 En ligne : https://doi.org/10.3390/rs13010155 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96810
in Remote sensing > vol 13 n° 1 (January 2021) . - n° 155[article]Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS) / Mirza Razi Imam Baig in Annals of GIS, vol 26 n° 4 (December 2020)
PermalinkCharacterizing the spatial and temporal variation of the land surface temperature hotspots in Wuhan from a local scale / Chen Yang in Geo-spatial Information Science, vol 23 n° 4 (December 2020)
PermalinkAnalyse de la déforestation dans la périphérie ouest de la réserve de biosphère du Dja au Cameroun, à partir d'une série multi-annuelle d'images Landsat / Eric Wilson Tegno Nguekam in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
PermalinkDétection du changement de l'étalement urbain au bas-Sahara algérien : apport de la télédétection spatiale et des SIG, cas de la ville de Biskra (Algérie) / Assoule Dechaicha in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
PermalinkForêt d'arbres aléatoires et classification d'images satellites : relation entre la précision du modèle d'entraînement et la précision globale de la classification / Aurélien N.G. Matsaguim in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
PermalinkCombination of Landsat 8 OLI and Sentinel-1 SAR time-series data for mapping paddy fields in parts of West and Central Java provinces, Indonesia / Sanjiwana Arjasakusuma in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
PermalinkComparative analysis of index and chemometric techniques-based assessment of leaf area index (LAI) in wheat through field spectroradiometer, Landsat-8, Sentinel-2 and Hyperion bands / Bappa Das in Geocarto international, vol 35 n° 13 ([01/10/2020])
PermalinkSpatio-temporal relationship between land cover and land surface temperature in urban areas: A case study in Geneva and Paris / Xu Ge in ISPRS International journal of geo-information, vol 9 n° 10 (October 2020)
PermalinkApplying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh / Mohammad Emran Hasan in Forests, vol 11 n° 9 (September 2020)
PermalinkComparison of tree-based classification algorithms in mapping burned forest areas / Dilek Kucuk Matci in Geodetski vestnik, vol 64 n° 3 (September - November 2020)
PermalinkMapping croplands of Europe, Middle East, Russia, and Central Asia using Landsat, Random Forest, and Google Earth Engine / Aparna R. Phalke in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
PermalinkMonitoring narrow mangrove stands in Baja California Sur, Mexico using linear spectral unmixing / Jonathan B. Thayn in Marine geodesy, Vol 43 n° 5 (September 2020)
PermalinkAccuracies of support vector machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets / Lamin R. Mansaray in Geocarto international, vol 35 n° 10 ([01/08/2020])
PermalinkDevelopment and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping / Alvin B. Baloloy in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkExtraction of built-up areas from Landsat-8 OLI data based on spectral-textural information and feature selection using support vector machine method / Vijendra Singh Bramhe in Geocarto international, vol 35 n° 10 ([01/08/2020])
PermalinkLanduse and land cover identification and disaggregating socio-economic data with convolutional neural network / Jingtao Yao in Geocarto international, vol 35 n° 10 ([01/08/2020])
PermalinkA simple distributed water balance model for an urbanized river basin using remote sensing and GIS techniques / Olutoyin Adeola Fashae in Geocarto international, vol 35 n° 9 ([01/07/2020])
PermalinkAn integrated approach for detection and prediction of greening situation in a typical desert area in China and its human and climatic factors analysis / Lei Zhou in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
PermalinkCoastline change modelling induced by climate change using geospatial techniques in Togo (West Africa) / Yawo Konko in Advances in Remote Sensing, vol 9 n° 2 (June 2020)
PermalinkImproved optical image matching time series inversion approach for monitoring dune migration in North Sinai Sand Sea: Algorithm procedure, application, and validation / Eslam Ali in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)
PermalinkMonitoring clearcutting and subsequent rapid recovery in Mediterranean coppice forests with Landsat time series / Gherardo Chirici in Annals of Forest Science [en ligne], Vol 77 n° 2 (June 2020)
PermalinkA water identification method basing on grayscale Landsat 8 OLI images / Zhitian Deng in Geocarto international, vol 35 n° 7 ([15/05/2020])
PermalinkAssessment of winter season land surface temperature in the Himalayan regions around the Kullu area in India using Landsat-8 data / Divyesh Varade in Geocarto international, vol 35 n° 6 ([01/05/2020])
PermalinkAssessment of malaria hazard, vulnerability, and risks in Dire Dawa City Administration of eastern Ethiopia using GIS and remote sensing / Abdinasir Moha in Applied geomatics, vol 12 n° 1 (April 2020)
PermalinkCombining radar and optical imagery to map oil palm plantations in Sumatra, Indonesia, using the Google Earth Engine / Thuan Sarzynski in Remote sensing, vol 12 n° 7 (April 2020)
PermalinkConterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database / Collin Homer in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
PermalinkA Fusion Approach for Water Area Classification Using Visible, Near Infrared and Synthetic Aperture Radar for South Asian Conditions / Shahryar K. Ahmad in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
PermalinkGIS-based modeling for selection of dam sites in the Kurdistan region, Iraq / Arsalan Ahmed Othman in ISPRS International journal of geo-information, vol 9 n° 4 (April 2020)
PermalinkHow far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study / Enrico Borgogno Mondino in International Journal of Remote Sensing IJRS, vol 41 n°12 (20 - 30 March 2020)
PermalinkAn original method for tree species classification using multitemporal multispectral and hyperspectral satellite data / Olga Grigorieva in Silva fennica, vol 54 n° 2 (March 2020)
PermalinkAssessing environmental impacts of urban growth using remote sensing / John C. Trinder in Geo-spatial Information Science, vol 23 n° 1 (March 2020)
PermalinkSea-land segmentation using deep learning techniques for Landsat-8 OLI imagery / Ting Yang in Marine geodesy, Vol 43 n° 2 (March 2020)
PermalinkSpectral–spatial–temporal MAP-based sub-pixel mapping for land-cover change detection / Da He in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
PermalinkThermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis / Jiong Wang in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
PermalinkComputer vision-based framework for extracting tectonic lineaments from optical remote sensing data / Ehsan Farahbakhsh in International Journal of Remote Sensing IJRS, vol 41 n°5 (01 - 08 février 2020)
PermalinkLandslide susceptibility mapping using maximum entropy and support vector machine models along the highway corridor, Garhwal Himalaya / Vijendra Kumar Pandey in Geocarto international, vol 35 n° 2 ([01/02/2020])
PermalinkA novel fire index-based burned area change detection approach using Landsat-8 OLI data / Sicong Liu in European journal of remote sensing, vol 53 n° 1 (2020)
PermalinkTransferring deep learning models for cloud detection between Landsat-8 and Proba-V / Gonzalo Mateo-García in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
PermalinkRegional-scale forest mapping over fragmented landscapes using global forest products and Landsat time series classification / Viktor Myroniuk in Remote sensing, vol 12 n° 1 (January 2020)
PermalinkComparison of multi-seasonal Landsat 8, Sentinel-2 and hyperspectral images for mapping forest alliances in Northern California / Matthew L. Clark in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
PermalinkIdentification of alpine glaciers in the central Himalayas using fully polarimetric L-Band SAR data / Guo-Hui Yao in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)
PermalinkPermalinkPermalinkA systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems / Dong Chen in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
PermalinkComparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images / Cheolhee Yoo in ISPRS Journal of photogrammetry and remote sensing, vol 157 (November 2019)
PermalinkUtilisation des SIG et de la télédétection pour la cartographie de la susceptibilité aux mouvements d'instabilité de versant dans l'Ouest montagneux de la Côte d'Ivoire / Boyossoro Hélène Kouadio in Revue Française de Photogrammétrie et de Télédétection, n° 221 (novembre 2019)
PermalinkPotential of Landsat-8 and Sentinel-2A composite for land use land cover analysis / Divyesh Varade in Geocarto international, vol 34 n° 14 ([30/10/2019])
PermalinkResidences information extraction from Landsat imagery using the multi-parameter decision tree method / Yujie Yang in Geocarto international, vol 34 n° 14 ([30/10/2019])
PermalinkEvolution of sand encroachment using supervised classification of Landsat data during the period 1987–2011 in a part of Laâyoune-Tarfaya basin of Morocco / Ali Aydda in Geocarto international, vol 34 n° 13 ([15/10/2019])
PermalinkLandsats 1–5 multispectral scanner system sensors radiometric calibration update / Cibele Teixeira-Pinto in IEEE Transactions on geoscience and remote sensing, Vol 57 n° 10 (October 2019)
PermalinkMultitemporal Landsat-MODIS fusion for cropland drought monitoring in El Salvador / Nguyen-Thanh Son in Geocarto international, vol 34 n° 12 ([15/09/2019])
PermalinkChange detection work-flow for mapping changes from arable lands to permanent grasslands with advanced boosting methods / Jiří Šandera in Geodetski vestnik, vol 63 n° 3 (September - November 2019)
PermalinkExploring the synergy between Landsat and ASAR towards improving thematic mapping accuracy of optical EO data / Alexander Cass in Applied geomatics, vol 11 n° 3 (September 2019)
PermalinkImplementing Moran eigenvector spatial filtering for massively large georeferenced datasets / Daniel A. Griffith in International journal of geographical information science IJGIS, vol 33 n° 9 (September 2019)
PermalinkQuantifying the impact of trees on land surface temperature: a downscaling algorithm at city-scale / Elena Barbierato in European journal of remote sensing, sans n° (2019)
PermalinkLand-cover change in the Wulagai grassland, Inner Mongolia of China between 1986 and 2014 analysed using multi-temporal Landsat images / Temulun Tangud in Geocarto international, vol 34 n° 11 ([15/08/2019])
PermalinkCalculating potential evapotranspiration and single crop coefficient based on energy balance equation using Landsat 8 and Sentinel-2 / Ali Mokhtari in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
PermalinkEstimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images / Jie Wang in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
PermalinkA generalized space-time OBIA classification scheme to map sugarcane areas at regional scale, using Landsat images time-series and the random forest algorithm / Ana Claudia Dos Santos Luciano in International journal of applied Earth observation and geoinformation, vol 80 (August 2019)
PermalinkIncreasing precision for French forest inventory estimates using the k-NN technique with optical and photogrammetric data and model-assisted estimators / Dinesh Babu Irulappa Pillai Vijayakumar in Remote sensing, vol 11 n° 8 (August 2019)
PermalinkCombining spatiotemporal fusion and object-based image analysis for improving wetland mapping in complex and heterogeneous urban landscapes / Meng Zhang in Geocarto international, vol 34 n° 10 ([15/07/2019])
PermalinkA novel algorithm for differentiating cloud from snow sheets using Landsat 8 OLI imagery / Tingting Wu in Advances in space research, vol 64 n°1 (1 July 2019)
PermalinkA novel method for separating woody and herbaceous time series / Qiang Zhou in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 7 (July 2019)
PermalinkEvaluating metrics derived from Landsat 8 OLI imagery to map crop cover / Rei Sonobe in Geocarto international, vol 34 n° 8 ([15/06/2019])
PermalinkInvestigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data : A case study of Wuhan, Central China / Xin Huang in ISPRS Journal of photogrammetry and remote sensing, vol 152 (June 2019)
PermalinkA new stochastic simulation algorithm for image-based classification : Feature-space indicator simulation / Qing Wang in ISPRS Journal of photogrammetry and remote sensing, vol 152 (June 2019)
PermalinkObject-based random forest modelling of aboveground forest biomass outperforms a pixel-based approach in a heterogeneous and mountain tropical environment / Eduarda M.O. Silveira in International journal of applied Earth observation and geoinformation, vol 78 (June 2019)
PermalinkUsing Sentinel-1A DInSAR interferometry and Landsat 8 data for monitoring water level changes in two lakes in Crete, Greece / D.D. Alexakis in Geocarto international, vol 34 n° 7 ([01/06/2019])
PermalinkExamining the sensitivity of spatial scale in cellular automata Markov chain simulation of land use change / Hao Wu in International journal of geographical information science IJGIS, Vol 33 n° 5-6 (May - June 2019)
PermalinkMulti-temporal image change mining based on evidential conflict reasoning / Fatma Haouas in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
PermalinkIncluding Sentinel-1 radar data to improve the disaggregation of MODIS land surface temperature data / Abdelhakim Amazirh in ISPRS Journal of photogrammetry and remote sensing, vol 150 (April 2019)
PermalinkAn image-pyramid-based raster-to-vector conversion (IPBRTVC) framework for consecutive-scale cartography and synchronized generalization of classic objects / Chang Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 3 (March 2019)
PermalinkEfficiency of post-stratification for a large-scale forest inventory : case Finnish NFI / Helena Haakana in Annals of Forest Science [en ligne], vol 76 n° 1 (March 2019)
PermalinkEstimation of aboveground biomass and carbon in a tropical rain forest in Gabon using remote sensing and GPS data / Kalifa Goïta in Geocarto international, vol 34 n° 3 ([01/03/2019])
PermalinkNear real-time deforestation detection in Malaysia and Indonesia using change vector analysis with three sensors / Pauline Perbet in International Journal of Remote Sensing IJRS, vol 40 n°19 (February 2019)
PermalinkTree cover mapping using hybrid fuzzy C-means method and multispectral satellite images / Linda Gulbe in Baltic forestry, vol 25 n° 1 (2019)
PermalinkPermalinkÉvaluation de la dégradation des forêts primaires par télédétection dans un espace de front pionnier consolidé d’Amazonie orientale (Paragominas) / Ali Fadhil Hasan (2019)
PermalinkPermalinkPermalinkMonitoring crops water needs at high spatio-temporal resolution by synergy of optical / thermal and radar observations / Abdelhakim Amazirh (2019)
PermalinkRetrieving relevant land cover and land use data to study urban climate change / Bénédicte Bucher (2019)
PermalinkA new generation of the United States National Land Cover Database : Requirements, research priorities, design, and implementation strategies / Limin Yang in ISPRS Journal of photogrammetry and remote sensing, vol 146 (December 2018)
PermalinkUrban impervious surface estimation from remote sensing and social data / Yan Yu in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 12 (December 2018)
PermalinkApplication of Landsat-8 and ASTER satellite remote sensing data for porphyry copper exploration: a case study from Shahr-e-Babak, Kerman, south of Iran / Morteza Safari in Geocarto international, vol 33 n° 11 (November 2018)
PermalinkA 3D convolutional neural network method for land cover classification using LiDAR and multi-temporal Landsat imagery / Zewei Xu in ISPRS Journal of photogrammetry and remote sensing, vol 144 (October 2018)
PermalinkCartographie des forêts humides dans la région d’El Kala (Algérie) à l’aide des outils d’observation de la Terre / Asma Kahli in Revue d'écologie, vol 73 n° 4 (octobre - décembre 2018)
PermalinkStand age estimation of rubber (Hevea brasiliensis) plantations using an integrated pixel- and object-based tree growth model and annual Landsat time series / Gang Chen in ISPRS Journal of photogrammetry and remote sensing, vol 144 (October 2018)
PermalinkAssessment of Nigeriasat-1 satellite data for urban land use/land cover analysis using object-based image analysis in Abuja, Nigeria / Christopher Ifechukwude Chima in Geocarto international, vol 33 n° 9 (September 2018)
PermalinkEffects of a large-scale late spring frost on a beech (Fagus sylvatica L.) dominated Mediterranean mountain forest derived from the spatio-temporal variations of NDVI / Angelo Nolè in Annals of Forest Science [en ligne], vol 75 n° 3 (September 2018)
PermalinkIntra-annual phenology for detecting understory plant invasion in urban forests / Kunwar K. Singh in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
PermalinkMapping ecosystem services at the regional scale: the validity of an upscaling approach / Solen Le Clec'h in International journal of geographical information science IJGIS, vol 32 n° 7-8 (July - August 2018)
PermalinkA method of downscaling temperature maps based on analytical hillshading for use in species distribution modelling / Ángel M. Felicísimo in Cartography and Geographic Information Science, Vol 45 n° 4 (July 2018)
PermalinkMulti-scale assessment of invasive plant species diversity using Pléiades 1A, RapidEye and Landsat-8 data / Siddhartha Khare in Geocarto international, vol 33 n° 7 (July 2018)
PermalinkMapping rubber trees based on phenological analysis of Landsat time series data-sets / Janatul Aziera binti Abd Razak in Geocarto international, vol 33 n° 6 (June 2018)
PermalinkModeling of inland flood vulnerability zones through remote sensing and GIS techniques in the highland region of Papua New Guinea / Porejane Harley in Applied geomatics, vol 10 n° 2 (June 2018)
PermalinkCartographie des défoliations du massif forestier du Pays des étangs en Lorraine : Apports potentiels de la télédétection / Thierry Bélouard in Revue forestière française [en ligne], vol 70 n° 5 (2018)
PermalinkHarmonic regression of Landsat time series for modeling attributes from national forest inventory data / Barry T. Wilson in ISPRS Journal of photogrammetry and remote sensing, vol 137 (March 2018)
PermalinkExploring image fusion of ALOS/PALSAR data and LANDSAT data to differentiate forest area / Saygin Abdikan in Geocarto international, vol 33 n° 1 (January 2018)
PermalinkUn inventaire forestier multisource pour la gestion des territoires / Dinesh Babu Irulappa Pillai Vijayakumar (2018)
PermalinkPermalinkSatellite remote sensing of the variability of the continental hydrology cycle in the lower Mekong basin over the last two decades / Binh Pham-Duc (2018)
PermalinkSuivi des cultures dans le périmètre du Loukkos-Maroc : Apport de la télédétection radar et optique / Siham Acharki (2018)
PermalinkToward a systematic integration of optical remote sensing for inland waters studies / Vincent Maurice Nouchi (2018)
PermalinkAn effective ensemble classification framework using random forests and a correlation based feature selection technique / Dibyajyoti Chutia in Transactions in GIS, vol 21 n° 6 (December 2017)
PermalinkComparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: A case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas / Zakaria Adiri in Advances in space research, vol 60 n° 11 (1 December 2017)
PermalinkMapping and estimating land change between 2001 and 2013 in a heterogeneous landscape in West Africa: Loss of forestlands and capacity building opportunities / Hèou Maléki Badjana in International journal of applied Earth observation and geoinformation, vol 63 (December 2017)
PermalinkOpen land cover from OpenStreetMap and remote sensing / Michael Schultz in International journal of applied Earth observation and geoinformation, vol 63 (December 2017)
PermalinkPer-pixel bias-variance decomposition of continuous errors in data-driven geospatial modeling : A case study in environmental remote sensing / Jing Gao in ISPRS Journal of photogrammetry and remote sensing, vol 134 (December 2017)
PermalinkThorough statistical comparison of machine learning regression models and their ensembles for sub-pixel imperviousness and imperviousness change mapping / Wojciech Drzewiecki in Geodesy and cartography, vol 66 n° 2 (December 2017)
PermalinkExtraction du bâti sur le territoire de la wilaya de Blida (Algérie) / Siham Bougdour in Géomatique expert, n° 119 (novembre - décembre 2017)
PermalinkGIS-based MCDA–AHP modelling for avalanche susceptibility mapping of Nubra valley region, Indian Himalaya / Satish Kumar in Geocarto international, vol 32 n° 11 (November 2017)
PermalinkMonitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015) / Ronald C. Estoque in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)
PermalinkRemote sensing of species diversity using Landsat 8 spectral variables / Sabelo Madonsela in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)
PermalinkUncertainties in tree cover maps of Sub-Saharan Africa and their implications for measuring progress towards CBD Aichi Targets / Dorit Gross in Remote sensing in ecology and conservation, vol inconnu ([01/11/2017])
![]()
PermalinkExamination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance / David P. Roy in Remote sensing of environment, vol 199 (15 September 2017)
PermalinkLa combinaison de l'image satellitaire avec les données citoyennes pour la mesure de l'ïlot de chaleur urbain : Premiers résultats sur la métropole de Lyon / Florent Renard in Ingénierie des systèmes d'information, ISI : Revue des sciences et technologies de l'information, RSTI, vol 22 n° 5 (septembre - octobre 2017)
PermalinkEvaluation de variables limnologiques grâce à des images Landsat / Danielle Teixeira Alves Da Silva in Géomatique expert, n° 118 (septembre - octobre 2017)
PermalinkA mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform / Bangqian Chen in ISPRS Journal of photogrammetry and remote sensing, vol 131 (September 2017)
PermalinkReconstruction of time-varying tidal flat topography using optical remote sensing imageries / Kuo-Hsin Tseng in ISPRS Journal of photogrammetry and remote sensing, vol 131 (September 2017)
PermalinkSpatiotemporal analyses of urban vegetation structural attributes using multitemporal Landsat TM data and field measurements / Zhibin Ren in Annals of Forest Science [en ligne], vol 74 n° 3 (September 2017)
PermalinkUsing landsat surface reflectance data as a reference target for multiswath hyperspectral data collected over mixed agricultural rangeland areas / Cooper McCann in IEEE Transactions on geoscience and remote sensing, vol 55 n° 9 (September 2017)
PermalinkChange detection using Landsat time series: A review of frequencies, preprocessing, algorithms, and applications / Zhe Zhu in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
PermalinkA graph-based approach to detect spatiotemporal dynamics in satellite image time series / Fabio Guttler in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
PermalinkReducing classification error of grassland overgrowth by combing low-density lidar acquisitions and optical remote sensing data / Timo P Pitkänen in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
PermalinkUsing Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe / Cornelius Senf in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
PermalinkDeveloping detailed age-specific thematic maps for coffee (Coffea arabica L.) in heterogeneous agricultural landscapes using random forests applied on Landsat 8 multispectral sensor / Abel Chemura in Geocarto international, vol 32 n° 7 (July 2017)
PermalinkFusion of Landsat 8 OLI and sentinel-2 MSI data / Qunming Wang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 7 (July 2017)
PermalinkFusion of RADARSAT-2 and multispectral optical remote sensing data for LULC extraction in a tropical agricultural area / Mohamed Barakat A. Gibril in Geocarto international, vol 32 n° 7 (July 2017)
PermalinkChange detection in forests and savannas using statistical analysis based on geographical objects / Lucilia Rezende Leite in Boletim de Ciências Geodésicas, vol 23 n° 2 (abr - jun 2017)
PermalinkPan-sharpening of Landsat-8 images and its application in calculating vegetation greenness and canopy water contents / Khan Rubayet Rahaman in ISPRS International journal of geo-information, vol 6 n° 6 (June 2017)
PermalinkTM-Based SOC models augmented by auxiliary data for carbon crediting programs in semi-arid environments / Salahuddin M. Jaber in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 6 (June 2017)
PermalinkEvaluation of multisource data for glacier terrain mapping : a neural net approach / Aparna Shukla in Geocarto international, vol 32 n° 5 (May 2017)
PermalinkTélédétection et photogrammétrie pour l'étude de la dynamique de l’occupation du sol dans le bassin versant de l’oued Chiba (Cap-Bon, Tunisie) / Anis Gasmi in Revue Française de Photogrammétrie et de Télédétection, n° 215 (mai - août 2017)
PermalinkA comparison of two downscaling procedures to increase the spatial resolution of mapping actual evapotranspiration / Milad Mahour in ISPRS Journal of photogrammetry and remote sensing, vol 126 (April 2017)
PermalinkAssessment of textural differentiations in forest resources in Romania using fractal analysis / Ion Andronache in Forests, vol 8 n° 3 (March 2017)
PermalinkEffect of training class label noise on classification performances for land cover mapping with satellite image time series / Charlotte Pelletier in Remote sensing, vol 9 n° 2 (February 2017)
PermalinkInconsistent estimates of forest cover change in China between 2000 and 2013 from multiple datasets: differences in parameters, spatial resolution, and definitions / Yan Li in Scientific reports, vol 7 (2017)
PermalinkInferring spatial scale change in an isopleth map / J. Lin in Cartographic journal (the), Vol 54 n° 1 (February 2017)
PermalinkAssessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas / Charlotte Pelletier in Remote sensing of environment, vol 187 (15 December 2016)
PermalinkExposure-related forest-steppe: A diverse landscape type determined by topography and climate / Martin Hais in Journal of Arid Environments, vol 135 (December 2016)
PermalinkThe effects of temporal differences between map and ground data on map-assisted estimates of forest area and biomass / Ronald E. McRoberts in Annals of Forest Science [en ligne], vol 73 n° 4 (December 2016)
PermalinkWave period and coastal bathymetry using wave propagation on optical images / Céline Danilo in IEEE Transactions on geoscience and remote sensing, vol 54 n° 11 (November 2016)
PermalinkRelative importance analysis of Landsat, waveform LIDAR and PALSAR inputs for deciduous biomass estimation / Alyssa Endres in European journal of remote sensing, vol 49 (2016)
PermalinkAccuracy assessment of NOAA coastal change analysis program 2006 - 2010 land cover and land cover change data / John W. McCombs in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 9 (September 2016)
PermalinkEstimating forest species abundance through linear unmixing of CHRIS/PROBA imagery / S. Stagakis in ISPRS Journal of photogrammetry and remote sensing, vol 119 (September 2016)
PermalinkFloristic composition and across-track reflectance gradient in Landsat images over Amazonian forests / Javier Muro in ISPRS Journal of photogrammetry and remote sensing, vol 119 (September 2016)
PermalinkSpatiotemporal subpixel mapping of time-series images / Qunming Wang in IEEE Transactions on geoscience and remote sensing, vol 54 n° 9 (September 2016)
PermalinkSuivi spatiotemporel de la tache urbaine à l'aide de cartes anciennes, d'images satellitaires et de SIG. La cas de Blida en Algérie (de 1936 à 2015) / Elodie Ruch in Géomatique expert, n° 112 (septembre - octobre 2016)
PermalinkAssessment and validation of evapotranspiration using SEBAL algorithm and Lysimeter data of IARI agricultural farm, India / Anju Bala in Geocarto international, vol 31 n° 7 - 8 (July - August 2016)
PermalinkA superresolution land-cover change detection method using remotely sensed images with different spatial resolutions / Xiaodong Li in IEEE Transactions on geoscience and remote sensing, vol 54 n° 7 (July 2016)
PermalinkOptical remotely sensed time series data for land cover classification: A review / Cristina Gómez in ISPRS Journal of photogrammetry and remote sensing, vol 116 (June 2016)
PermalinkMonitoring of water stress in wheat using multispectral indices derived from Landsat-TM / Nitika Dangwal in Geocarto international, vol 31 n° 5 - 6 (May - June 2016)
PermalinkEstimating forest and woodland aboveground biomass using active and passive remote sensing / Zhuoting Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 4 (April 2016)
PermalinkForest above ground biomass inversion by fusing GLAS with optical remote sensing data / Xiaohuan Xi in ISPRS International journal of geo-information, vol 5 n° 4 (April 2016)
PermalinkComparison of three Landsat TM compositing methods: A case study using modeled tree canopy cover / Bonnie Ruefenacht in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 3 (March 2016)
PermalinkMapping urban growth of the capital city of Honduras from Landsat data using the impervious surface fraction algorithm / Nguyen-Thanh Son in Geocarto international, vol 31 n° 3 - 4 (March - April 2016)
PermalinkPan-tropical hinterland forests: mapping minimally disturbed forests / Alexandra Tyukavina in Global ecology and biogeography, vol 25 n° 2 (February 2016)
PermalinkAn assessment of image features and random forest for land cover mapping over large areas using high resolution Satellite Image Time Series / Charlotte Pelletier (2016)
PermalinkAutomatic detection of clouds and shadows using high resolution satellite image time series / Nicolas Champion (2016)
![]()
PermalinkA Bayesian network-based method to alleviate the ill-posed inverse problem: A case study on leaf area index and canopy water content retrieval / Xingwen Quan in IEEE Transactions on geoscience and remote sensing, vol 53 n° 12 (December 2015)
PermalinkExamining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments / Mbulisi Sibanda in ISPRS Journal of photogrammetry and remote sensing, vol 110 (December 2015)
PermalinkDistinctive order based self-similarity descriptor for multi-sensor remote sensing image matching / Amin Sedaghat in ISPRS Journal of photogrammetry and remote sensing, vol 108 (October 2015)
PermalinkInvestigating the robustness of the new Landsat-8 Operational Land Imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas / Timothy Dube in ISPRS Journal of photogrammetry and remote sensing, vol 108 (October 2015)
PermalinkLand cover changes assessment using object-based image analysis in the Binah River watershed (Togo and Benin) / Hèou Maléki Badjana in Earth and space science, vol 2 n° 10 (October 2015)
PermalinkMonitoring of chronological stages of deforestation-afforestation: the case of Southern Chile / Nicolas Maestripieri in Photo interpretation, European journal of applied remote sensing, vol 51 n° 3 (septembre 2015)
PermalinkRemoval of thin clouds using cirrus and QA bands of Landsat-8 / Yang Shen in Photogrammetric Engineering & Remote Sensing, PERS, vol 81 n° 9 (September 2015)
PermalinkAn adaptive semisupervised approach to the detection of user-defined recurrent changes in image time series / Daniel Zanotta in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)
PermalinkEstimation de la déforestation des forêts humides à Madagascar utilisant une classification multidate d'images Landsat entre 2005, 2010 et 2013 / F.A. Rakotomala in Revue Française de Photogrammétrie et de Télédétection, n° 211 - 212 (juillet - décembre 2015)
PermalinkA Landsat data tiling and compositing approach optimized for change detection in the conterminous United States / Kurtis J. Nelson in Photogrammetric Engineering & Remote Sensing, PERS, vol 81 n° 7 (July 2015)
PermalinkCompilation de données radar et optiques pour la cartographie des classes d'occupation du sol aux environs du système lacustre de Bizerte (Tunisie du Nord) / Ibtissem Amri in Photo interpretation, European journal of applied remote sensing, vol 51 n° 2 (juin 2015)
PermalinkPotentialités des images Landsat pour l'identification et la délimitation de zones humides à l'échelle régionale : l'exemple de l'Est de la France / Sébastien Lebaut in Physio-Géo, vol 9 (juin 2015)
PermalinkSpatial analysis of high-resolution urban thermal patterns in Vojvodina, Serbia / Dusan Jovanovic in Geocarto international, vol 30 n° 5 - 6 (May - July 2015)
PermalinkUse of Landsat and Corona data for mapping forest cover change from the mid-1960s to 2000s: Case studies from the Eastern United States and Central Brazil / Dan-Xia Song in ISPRS Journal of photogrammetry and remote sensing, vol 103 (May 2015)
PermalinkEvaluating leaf chlorophyll content prediction from multispectral remote sensing data within a physically-based modelling framework / H. Croft in ISPRS Journal of photogrammetry and remote sensing, vol 102 (April 2015)
PermalinkImproving forest aboveground biomass estimation using seasonal Landsat NDVI time-series / Xiaolin Zhu in ISPRS Journal of photogrammetry and remote sensing, vol 102 (April 2015)
PermalinkCharacterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm / Oumer S. Ahmed in ISPRS Journal of photogrammetry and remote sensing, vol 101 (March 2015)
PermalinkEvaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa / Timothy Dube in ISPRS Journal of photogrammetry and remote sensing, vol 101 (March 2015)
PermalinkGeospatial analysis of land-use change processes in a densely populated coastal city: the case of Port Harcourt, south-east Nigeria / Glory O. Enaruvbe in Geocarto international, vol 30 n° 3 - 4 (March - April 2015)
PermalinkImproving the spatial resolution of landsat TM/ETM+ through fusion with SPOT5 images via learning-based super-resolution / Huihui Song in IEEE Transactions on geoscience and remote sensing, vol 53 n° 3 (March 2015)
PermalinkPermalinkSensitivity analysis of a bio-optical model for Italian lakes focused on Landsat-8, Sentinel-2 and Sentinel-3 / Ciro Manzo in European journal of remote sensing, vol 48 n° 1 (2015)
PermalinkVegetation Burn Severity Mapping Using Landsat-8 and WorldView-2 / Zhuoting Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 81 n° 2 (February 2015)
PermalinkAn analysis of urban expansion and its associated thermal characteristics using Landsat imagery / Wei Huang in Geocarto international, vol 30 n° 1 - 2 (January - February 2015)
PermalinkComparison of methods toward multi-scale forest carbon mapping and spatial uncertainty analysis: combining national forest inventory plot data and landsat TM images / Andrew L. Fleming in European Journal of Forest Research, vol 134 n° 1 (January 2015)
PermalinkEtude de l'évolution de l'utilisation du sol dans le district Sunsari (plaine du Népal) depuis les années 1950 / Mathilde Dumont-Aublin (2015)
PermalinkImproved land cover mapping using aerial photographs and satellite images / Katalin Varga in Open geosciences, vol 7 n° 1 (January 2015)
![]()
PermalinkRetrieving the stand age from a retrospective detection of multinannual forest changes using Landsat data. Application on the heavily managed maritime pine forest in Southwestern France from a 30-year Landsat time-series (1984–2014) / Dominique Guyon (2015)
PermalinkSpatiotemporally characterizing urban temperatures based on remote sensing and GIS analysis: a case study in the city of Saskatoon (SK, Canada) / Li Shen in Open geosciences, vol 7 n° 1 (January 2015)
PermalinkUse of remotely sensed auxiliary data for improving sample-based forest inventories / Svetlana Saarela (2015)
PermalinkRemote sensing of forest degradation in Southeast Asia—Aiming for a regional view through 5–30 m satellite data / Jukka Miettinen in Global ecology and conservation, vol 2 (December 2014)
PermalinkIntegration of Lidar and Landsat to estimate forest canopy cover in coastal British Columbia / Oumer S. Ahmed in Photogrammetric Engineering & Remote Sensing, PERS, vol 80 n° 10 (October 2014)
PermalinkApplication de la télédétection et des méthodes d'analyse multicritère à l'étude de la variabilité spatiale des potentialités en eau souterraine d'un aquifère du socle d'une région tropicale humide de l'Afrique de l'Ouest : cas du département de Bongouanou, Est de la Côte-d'Ivoire / Emile Assie Assemian in Photo interpretation, European journal of applied remote sensing, vol 50 n° 3 - 4 (septembre 2014)
PermalinkTraitement de données Thematic Mapper pour la cartographie multi temporelle du plateau sous-marin autour des îles Kerkennah (Tunisie) / Rim Katlane in Photo interpretation, European journal of applied remote sensing, vol 50 n° 3 - 4 (septembre 2014)
PermalinkAn intelligent approach towards automatic shape modelling and object extraction from satellite images using cellular automata based algorithm / P. V. Arun in Geocarto international, vol 29 n° 5 - 6 (August - October 2014)
Permalink