Descripteur


Etendre la recherche sur niveau(x) vers le bas
Assessing spatial-temporal evolution processes and driving forces of karst rocky desertification / Fei Chen in Geocarto international, vol 36 n° 3 ([01/03/2021])
![]()
[article]
Titre : Assessing spatial-temporal evolution processes and driving forces of karst rocky desertification Type de document : Article/Communication Auteurs : Fei Chen, Auteur ; Shijie Wang, Auteur ; Xiaoyong Bai, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 262 - 280 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] carte d'utilisation du sol
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] classification et arbre de régression
[Termes descripteurs IGN] désertification
[Termes descripteurs IGN] données spatiotemporelles
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image Landsat-TM
[Termes descripteurs IGN] karst
[Termes descripteurs IGN] lithologieRésumé : (auteur) Karst Rocky Desertification (KRD) has become the most serious ecological disaster in Southwest China. We used the data of Thematic Mapper (TM) images from 1990, 1995, 2000, 2004, and 2011 and the 2016 Operational Land Imager (OLI) image. These sensing images were pre-processed by removing non-karst areas based on lithology and cutting away the land types impossibly generating KRD from land use maps. Then, we used a Classification And Regression Tree (CART) to classify the KRD. We want to improve the interpretation accuracy of KRD through the above steps. The results were as follows: (1) The KRD experiences the evolution process of ‘first deterioration and then improvement’. The rate is −4.94 km2.a−1 over a period of 1990 to 2004, and the rate is 36.48 km2.a−1 from 2004 to 2016; (2) The most influential factors causing KRD formation are the lithology and the resident population density, with contribution rates of 30.17% and 25.86%, respectively. Numéro de notice : A2021-140 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1595175 date de publication en ligne : 18/07/2019 En ligne : https://doi.org/10.1080/10106049.2019.1595175 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97036
in Geocarto international > vol 36 n° 3 [01/03/2021] . - pp 262 - 280[article]Performance evaluation of artificial neural networks for natural terrain classification / Perpetual Hope Akwensi in Applied geomatics, vol 13 n° 1 (March 2021)
![]()
[article]
Titre : Performance evaluation of artificial neural networks for natural terrain classification Type de document : Article/Communication Auteurs : Perpetual Hope Akwensi, Auteur ; Eric Thompson Brantson, Auteur ; Johanna Ngula Niipele, Auteur ; et al., Auteur Année de publication : 2021 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Afrique occidentale
[Termes descripteurs IGN] classification par nuées dynamiques
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] fonction de base radiale
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] inventaire de la végétation
[Termes descripteurs IGN] réalité de terrain
[Termes descripteurs IGN] regroupement de données
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] segmentation d'imageRésumé : (auteur) Remotely sensed image segmentation and classification form a very important part of remote sensing which involves geo-data processing and analysis. Artificial neural networks (ANNs) are powerful machine learning approaches that have been successfully implemented in numerous fields of study. There exist many kinds of neural networks and there is no single efficient approach for resolving all geospatial problems. Therefore, this research aims at investigating and evaluating the efficiency of three ANN approaches, namely, backpropagation neural network (BPNN), radial basis function neural network (RBFNN), and Elman backpropagation recurrent neural network (EBPRNN) using multi-spectral satellite images for terrain feature classification. Additionally, there has been close to no application of EBPRNN in modeling multi-spectral satellite images even though they also contain patterns. The efficiency of the three tested approaches is presented using the kappa coefficient, user’s accuracy, producer’s accuracy, overall accuracy, classification error, and computational simulation time. The study demonstrated that all the three ANN models achieved the aim of pattern identification, segmentation, and classification. This paper also discusses the observations of increasing sample sizes as inputs in the various ANN models. It was concluded that RBFNN’s computational time increases with increasing sample size and consequently increasing the number of hidden neurons; BPNN on overall attained the highest accuracy compared to the other models; EBPRNN’s accuracy increases with increasing sample size, hence a promising and perhaps an alternative choice to BPNN and RBFNN if very large datasets are involved. Based on the performance metrics used in this study, BPNN is the best model out of the three evaluated ANN models. Numéro de notice : A2021-223 Affiliation des auteurs : non IGN Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s12518-021-00360-9 date de publication en ligne : 13/02/2021 En ligne : https://doi.org/10.1007/s12518-021-00360-9 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97194
in Applied geomatics > vol 13 n° 1 (March 2021)[article]Geo-spatially modelling dengue epidemics in urban cities: a case study of Lahore, Pakistan / Muhammad Imran in Geocarto international, vol 36 n° 2 ([01/02/2021])
![]()
[article]
Titre : Geo-spatially modelling dengue epidemics in urban cities: a case study of Lahore, Pakistan Type de document : Article/Communication Auteurs : Muhammad Imran, Auteur ; Yasra Hamid, Auteur ; Abeer Mazher, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 197 - 211 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] diptère
[Termes descripteurs IGN] image Landsat
[Termes descripteurs IGN] maladie tropicale
[Termes descripteurs IGN] modélisation spatiale
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] Pakistan
[Termes descripteurs IGN] régression géographiquement pondérée
[Termes descripteurs IGN] régression logistique
[Termes descripteurs IGN] risque sanitaire
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] zone intertropicale
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) The study objective is to predict the epidemiological impact of dengue fever arbovirosis in urban tropical areas of Pakistan. To do so, we used the GPS-based data of the Aedes larvae collected during 2014–2015 in Lahore. We developed a Geographically Weighted Logistic Regression (GWLR) model for Geospatially predicting larvae presence or absence in Lahore. Data on rainfall, temperature are included along with time series of the normalized difference vegetation index (NDVI) derived from Landsat imagery. We observed a high spatial variability of the GWLR parameter estimates of these variables in the study area. The GWLR model significantly (R2a = 0.78) explained the presence or absence of Aedes larvae with temperature, rainfall and NDVI variables in South and Southeast of the study area. In the North and North-West, however, GWLR relationships were observed weak in highly populated areas. Interpolating GWLR coefficients generate more accurate maps of Aedes larvae presence or absence. Numéro de notice : A2021-118 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1614100 date de publication en ligne : 10/06/2020 En ligne : https://doi.org/10.1080/10106049.2019.1614100 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96932
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 197 - 211[article]Monitoring the spatiotemporal dynamics of urban green space and Its impacts on thermal environment in Shenzhen city from 1978 to 2018 with remote sensing data / Yue Liu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 2 (February 2021)
![]()
[article]
Titre : Monitoring the spatiotemporal dynamics of urban green space and Its impacts on thermal environment in Shenzhen city from 1978 to 2018 with remote sensing data Type de document : Article/Communication Auteurs : Yue Liu, Auteur ; Hui Li, Auteur ; Peng Gao, Auteur ; Cheng Zhong, Auteur Année de publication : 2021 Article en page(s) : pp 81 - 89 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] croissance urbaine
[Termes descripteurs IGN] données spatiotemporelles
[Termes descripteurs IGN] dynamique spatiale
[Termes descripteurs IGN] espace vert
[Termes descripteurs IGN] ilot thermique urbain
[Termes descripteurs IGN] image Landsat
[Termes descripteurs IGN] impact sur l'environnement
[Termes descripteurs IGN] Shenzhen
[Termes descripteurs IGN] urbanismeRésumé : (Auteur) In a developing city, urban green space (UGS) plays an increasingly significant role in improving the urban environment and beautifying the urban landscape. In the meantime, UGS has been substantially and frequently interfered with by human activities. Taking Shenzhen city (a great metropolis of China) as an example, this study investigated the spatio-temporal dynamics of UGS and its influence on the urban thermal environment with Landsat images. From 1978 to 2018, all croplands and more than 50% of water bodies disappeared, while the built-up area increased more than 6 times. The rapid expansion of impervious surface and loss of UGS led to the spread of a surface urban heat island. The study shows that UGS has a significantly mitigating impact on urban land surface temperature, with cold islands mainly located at city parks. The results will be of great significance for improving UGS management, alleviating the urban heat island effect, and establishing a sustainable eco-environment. Numéro de notice : A2021-097 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.2.81 date de publication en ligne : 01/02/2021 En ligne : https://doi.org/10.14358/PERS.87.2.81 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97040
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 2 (February 2021) . - pp 81 - 89[article]The use of deep machine learning for the automated selection of remote sensing data for the determination of areas of arable land degradation processes distribution / Dimitri I. Rukhovitch in Remote sensing, vol 13 n° 1 (January 2021)
![]()
[article]
Titre : The use of deep machine learning for the automated selection of remote sensing data for the determination of areas of arable land degradation processes distribution Type de document : Article/Communication Auteurs : Dimitri I. Rukhovitch, Auteur ; Polina V. Koroleva, Auteur ; Danila D. Rukhovitch, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 155 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] dégradation des sols
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] érosion
[Termes descripteurs IGN] image Landsat
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] Russie
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] système d'information géographiqueRésumé : (auteur) Soil degradation processes are widespread on agricultural land. Ground-based methods for detecting degradation require a lot of labor and time. Remote methods based on the analysis of vegetation indices can significantly reduce the volume of ground surveys. Currently, machine learning methods are increasingly being used to analyze remote sensing data. In this paper, the task is set to apply deep machine learning methods and methods of vegetation indices calculation to automate the detection of areas of soil degradation development on arable land. In the course of the work, a method was developed for determining the location of degraded areas of soil cover on arable fields. The method is based on the use of multi-temporal remote sensing data. The selection of suitable remote sensing data scenes is based on deep machine learning. Deep machine learning was based on an analysis of 1028 scenes of Landsats 4, 5, 7 and 8 on 530 agricultural fields. Landsat data from 1984 to 2019 was analyzed. Dataset was created manually for each pair of “Landsat scene”/“agricultural field number”(for each agricultural field, the suitability of each Landsat scene was assessed). Areas of soil degradation were calculated based on the frequency of occurrence of low NDVI values over 35 years. Low NDVI values were calculated separately for each suitable fragment of the satellite image within the boundaries of each agricultural field. NDVI values of one-third of the field area and lower than the other two-thirds were considered low. During testing, the method gave 12.5% of type I errors (false positive) and 3.8% of type II errors (false negative). Independent verification of the method was carried out on six agricultural fields on an area of 713.3 hectares. Humus content and thickness of the humus horizon were determined in 42 ground-based points. In arable land degradation areas identified by the proposed method, the probability of detecting soil degradation by field methods was 87.5%. The probability of detecting soil degradation by ground-based methods outside the predicted regions was 3.8%. The results indicate that deep machine learning is feasible for remote sensing data selection based on a binary dataset. This eliminates the need for intermediate filtering systems in the selection of satellite imagery (determination of clouds, shadows from clouds, open soil surface, etc.). Direct selection of Landsat scenes suitable for calculations has been made. It allows automating the process of constructing soil degradation maps. Numéro de notice : A2021-074 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010155 date de publication en ligne : 05/01/2021 En ligne : https://doi.org/10.3390/rs13010155 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96810
in Remote sensing > vol 13 n° 1 (January 2021) . - n° 155[article]Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS) / Mirza Razi Imam Baig in Annals of GIS, vol 26 n° 4 (December 2020)
PermalinkCharacterizing the spatial and temporal variation of the land surface temperature hotspots in Wuhan from a local scale / Chen Yang in Geo-spatial Information Science, vol 23 n° 4 (December 2020)
PermalinkAnalyse de la déforestation dans la périphérie ouest de la réserve de biosphère du Dja au Cameroun, à partir d'une série multi-annuelle d'images Landsat / Eric Wilson Tegno Nguekam in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
PermalinkDétection du changement de l'étalement urbain au bas-Sahara algérien : apport de la télédétection spatiale et des SIG, cas de la ville de Biskra (Algérie) / Assoule Dechaicha in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
PermalinkForêt d'arbres aléatoires et classification d'images satellites : relation entre la précision du modèle d'entraînement et la précision globale de la classification / Aurélien N.G. Matsaguim in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
PermalinkCombination of Landsat 8 OLI and Sentinel-1 SAR time-series data for mapping paddy fields in parts of West and Central Java provinces, Indonesia / Sanjiwana Arjasakusuma in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
PermalinkComparative analysis of index and chemometric techniques-based assessment of leaf area index (LAI) in wheat through field spectroradiometer, Landsat-8, Sentinel-2 and Hyperion bands / Bappa Das in Geocarto international, vol 35 n° 13 ([01/10/2020])
PermalinkSpatio-temporal relationship between land cover and land surface temperature in urban areas: A case study in Geneva and Paris / Xu Ge in ISPRS International journal of geo-information, vol 9 n° 10 (October 2020)
PermalinkApplying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh / Mohammad Emran Hasan in Forests, vol 11 n° 9 (September 2020)
PermalinkComparison of tree-based classification algorithms in mapping burned forest areas / Dilek Kucuk Matci in Geodetski vestnik, vol 64 n° 3 (September - November 2020)
PermalinkMapping croplands of Europe, Middle East, Russia, and Central Asia using Landsat, Random Forest, and Google Earth Engine / Aparna R. Phalke in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
PermalinkMonitoring narrow mangrove stands in Baja California Sur, Mexico using linear spectral unmixing / Jonathan B. Thayn in Marine geodesy, Vol 43 n° 5 (September 2020)
PermalinkAccuracies of support vector machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets / Lamin R. Mansaray in Geocarto international, vol 35 n° 10 ([01/08/2020])
PermalinkDevelopment and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping / Alvin B. Baloloy in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkExtraction of built-up areas from Landsat-8 OLI data based on spectral-textural information and feature selection using support vector machine method / Vijendra Singh Bramhe in Geocarto international, vol 35 n° 10 ([01/08/2020])
PermalinkLanduse and land cover identification and disaggregating socio-economic data with convolutional neural network / Jingtao Yao in Geocarto international, vol 35 n° 10 ([01/08/2020])
PermalinkA simple distributed water balance model for an urbanized river basin using remote sensing and GIS techniques / Olutoyin Adeola Fashae in Geocarto international, vol 35 n° 9 ([01/07/2020])
PermalinkAn integrated approach for detection and prediction of greening situation in a typical desert area in China and its human and climatic factors analysis / Lei Zhou in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
PermalinkCoastline change modelling induced by climate change using geospatial techniques in Togo (West Africa) / Yawo Konko in Advances in Remote Sensing, vol 9 n° 2 (June 2020)
PermalinkImproved optical image matching time series inversion approach for monitoring dune migration in North Sinai Sand Sea: Algorithm procedure, application, and validation / Eslam Ali in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)
PermalinkMonitoring clearcutting and subsequent rapid recovery in Mediterranean coppice forests with Landsat time series / Gherardo Chirici in Annals of Forest Science [en ligne], Vol 77 n° 2 (June 2020)
PermalinkA water identification method basing on grayscale Landsat 8 OLI images / Zhitian Deng in Geocarto international, vol 35 n° 7 ([15/05/2020])
PermalinkAssessment of winter season land surface temperature in the Himalayan regions around the Kullu area in India using Landsat-8 data / Divyesh Varade in Geocarto international, vol 35 n° 6 ([01/05/2020])
PermalinkAssessment of malaria hazard, vulnerability, and risks in Dire Dawa City Administration of eastern Ethiopia using GIS and remote sensing / Abdinasir Moha in Applied geomatics, vol 12 n° 1 (April 2020)
PermalinkCombining radar and optical imagery to map oil palm plantations in Sumatra, Indonesia, using the Google Earth Engine / Thuan Sarzynski in Remote sensing, vol 12 n° 7 (April 2020)
PermalinkConterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database / Collin Homer in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
PermalinkA Fusion Approach for Water Area Classification Using Visible, Near Infrared and Synthetic Aperture Radar for South Asian Conditions / Shahryar K. Ahmad in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
PermalinkGIS-based modeling for selection of dam sites in the Kurdistan region, Iraq / Arsalan Ahmed Othman in ISPRS International journal of geo-information, vol 9 n° 4 (April 2020)
PermalinkHow far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study / Enrico Borgogno Mondino in International Journal of Remote Sensing IJRS, vol 41 n°12 (20 - 30 March 2020)
PermalinkAn original method for tree species classification using multitemporal multispectral and hyperspectral satellite data / Olga Grigorieva in Silva fennica, vol 54 n° 2 (March 2020)
PermalinkAssessing environmental impacts of urban growth using remote sensing / John C. Trinder in Geo-spatial Information Science, vol 23 n° 1 (March 2020)
PermalinkSea-land segmentation using deep learning techniques for Landsat-8 OLI imagery / Ting Yang in Marine geodesy, Vol 43 n° 2 (March 2020)
PermalinkSpectral–spatial–temporal MAP-based sub-pixel mapping for land-cover change detection / Da He in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
PermalinkThermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis / Jiong Wang in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
PermalinkComputer vision-based framework for extracting tectonic lineaments from optical remote sensing data / Ehsan Farahbakhsh in International Journal of Remote Sensing IJRS, vol 41 n°5 (01 - 08 février 2020)
PermalinkLandslide susceptibility mapping using maximum entropy and support vector machine models along the highway corridor, Garhwal Himalaya / Vijendra Kumar Pandey in Geocarto international, vol 35 n° 2 ([01/02/2020])
PermalinkA novel fire index-based burned area change detection approach using Landsat-8 OLI data / Sicong Liu in European journal of remote sensing, vol 53 n° 1 (2020)
PermalinkTransferring deep learning models for cloud detection between Landsat-8 and Proba-V / Gonzalo Mateo-García in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
PermalinkRegional-scale forest mapping over fragmented landscapes using global forest products and Landsat time series classification / Viktor Myroniuk in Remote sensing, vol 12 n° 1 (January 2020)
PermalinkComparison of multi-seasonal Landsat 8, Sentinel-2 and hyperspectral images for mapping forest alliances in Northern California / Matthew L. Clark in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
PermalinkIdentification of alpine glaciers in the central Himalayas using fully polarimetric L-Band SAR data / Guo-Hui Yao in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)
PermalinkPermalinkPermalinkA systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems / Dong Chen in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
PermalinkComparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images / Cheolhee Yoo in ISPRS Journal of photogrammetry and remote sensing, vol 157 (November 2019)
Permalink