Descripteur
Documents disponibles dans cette catégorie (1326)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Quantifying the impact of trees on land surface temperature: a downscaling algorithm at city-scale / Elena Barbierato in European journal of remote sensing, vol 52 n° 4 (2019)
[article]
Titre : Quantifying the impact of trees on land surface temperature: a downscaling algorithm at city-scale Type de document : Article/Communication Auteurs : Elena Barbierato, Auteur ; Iacopo Bernetti, Auteur ; Irene Capecchi, Auteur ; Claudio Saragosa, Auteur Année de publication : 2019 Article en page(s) : 11 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] arbre urbain
[Termes IGN] changement climatique
[Termes IGN] climat urbain
[Termes IGN] couvert végétal
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données météorologiques
[Termes IGN] flore urbaine
[Termes IGN] ilot thermique urbain
[Termes IGN] image Landsat-8
[Termes IGN] image thermique
[Termes IGN] température au sol
[Termes IGN] Toscane (Italie)Résumé : (auteur) The climate of a city influences the ways in which its outdoor spaces are used. Especially, public spaces intended for use by pedestrians and cyclists, such as parks, squares, residential and commercial streets, and foot and cycle paths will be used and enjoyed more frequently if they have a comfortable and healthy climate. Due to the predicted global temperature increase, urban climate is likely to become more uncomfortable, especially in summer when an increase in heat stress is expected. Urban forestry has been proposed as one approach for mitigating the human health consequences of increased temperature resulting from climate change. The aims of the current research were to (a) provide a transferable methodology useful for analyzing the effect of urban trees on surface temperature reduction, particularly in public spaces, and (b) provide high-resolution urban mapping for adaptation strategies to climate change based on green space projects. To achieve the established aims, we developed a methodology that uses multisource data: LiDAR data, high-resolution Landsat imagery, global climate model data from CMIP5 (IPPC Fifth Assessment), and data from meteorological stations. The proposed model can be a useful tool for validating the efficiency of design simulations of new green spaces for temperature mitigation. Numéro de notice : A2019-320 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2019.1646104 Date de publication en ligne : 29/07/2019 En ligne : https://doi.org/10.1080/22797254.2019.1646104 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93266
in European journal of remote sensing > vol 52 n° 4 (2019) . - 11 p.[article]Land-cover change in the Wulagai grassland, Inner Mongolia of China between 1986 and 2014 analysed using multi-temporal Landsat images / Temulun Tangud in Geocarto international, vol 34 n° 11 ([15/08/2019])
[article]
Titre : Land-cover change in the Wulagai grassland, Inner Mongolia of China between 1986 and 2014 analysed using multi-temporal Landsat images Type de document : Article/Communication Auteurs : Temulun Tangud, Auteur ; Kenlo Nasahara, Auteur ; Habura Borjigin, Auteur ; Hasi Bagan, Auteur Année de publication : 2019 Article en page(s) : pp 1237 - 1251 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] analyse spatio-temporelle
[Termes IGN] carte d'occupation du sol
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection de changement
[Termes IGN] image Landsat
[Termes IGN] maillage
[Termes IGN] Mongolie intérieure (Chine)
[Termes IGN] prairie
[Termes IGN] série temporelle
[Termes IGN] steppe
[Termes IGN] zone arideRésumé : (Auteur) The Inner Mongolian steppe is a vast grassland ecosystem that has long been home to nomadic pastoralists. However, this steppe is experiencing grassland degradation as well as more frequent sand storms. The objective of this study was to detect land-cover changes in the Wulagai grassland of Inner Mongolia using multi-temporal Landsat images from 1986 to 2014, and to determine the factors driving these changes and their impacts. Land-cover maps for 1986, 1995, 2000, 2006 and 2014 were produced using the Support Vector Machine method. Subsequently, 300 m × 300 m grid-cell vector map which covered Wulagai grassland was made to detect land-cover changes and correlations between land-cover classes. The results show degradation trend from 1986 to 2014. Grid-cell-based spatial correlation analysis confirmed a strong negative correlation between grassland and barren, indicating that grassland degradation in this region is due to the regional modernization over the past 28 years. Numéro de notice : A2019-464 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1478457 Date de publication en ligne : 01/06/2018 En ligne : https://doi.org/10.1080/10106049.2018.1478457 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93607
in Geocarto international > vol 34 n° 11 [15/08/2019] . - pp 1237 - 1251[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2019111 RAB Revue Centre de documentation En réserve L003 Disponible Calculating potential evapotranspiration and single crop coefficient based on energy balance equation using Landsat 8 and Sentinel-2 / Ali Mokhtari in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
[article]
Titre : Calculating potential evapotranspiration and single crop coefficient based on energy balance equation using Landsat 8 and Sentinel-2 Type de document : Article/Communication Auteurs : Ali Mokhtari, Auteur ; Hamideh Noory, Auteur ; Farrokh Pourshakouri, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 231 - 245 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bilan énergétique
[Termes IGN] blé (céréale)
[Termes IGN] cultures
[Termes IGN] évapotranspiration
[Termes IGN] fusion d'images
[Termes IGN] fusion de données
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Terra-MODIS
[Termes IGN] image thermique
[Termes IGN] orge (céréale)
[Termes IGN] TéhéranRésumé : (Auteur) Evapotranspiration is considered to be an important component of allocating water to agricultural sector; therefore, the more accurate this parameter is, the more optimized the water use can be. This study was conducted in order to evaluate the Landsat 8 and Sentinel-2 data (A and B), both separately and combined, in potential evapotranspiration (ETp) and single crop coefficient (Kc) estimations. Field measurements such as crop height, leaf area index (LAI), land surface temperature (LST), air temperature above canopy (AT), and spectral data were exploited in the evaluating process throughout the entirety of 2017–18 growing season under winter wheat and barley cultivations in the Agricultural Research Farms of the University of Tehran. The novel method of Multi-Sensor Data Fusion using the Priestly-Taylor equation was taken into practice for satellite-based ETp (MSDF-ET) calculation from the combination of MODIS thermal and Landsat 8 and Sentinel-2 multispectral data. Thermal images were downscaled by the means of the TsHARP algorithm. Thus, prior to ETp calculation, the thermal sharpening algorithm calculated using different spectral indices (SI) was assessed. The SI included NDVI, SAVI, SR, NDWI, NDWIg, and LSWI. The subsequent results were representative of the LSWI qualification under both Landsat 8 and Sentinel-2 conditions against thermal and spectral measurements. Also the satellite-based ETp strongly correlated with the ETp derived from the field data illuminating the promising accuracy of the MSDF-ET method in both Landsat 8 and Sentinel-2 data. In the end, the time series of Kc obtained from the combination of satellites were fairly indicative of the real-world variations under different vegetation cover and crop growth stages. Overall, using Landsat 8 and Sentinel-2 products in integration with each other could significantly result in more reliable decisions in agricultural water resources management. Numéro de notice : A2019-270 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.06.011 Date de publication en ligne : 24/06/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.06.011 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93088
in ISPRS Journal of photogrammetry and remote sensing > vol 154 (August 2019) . - pp 231 - 245[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images / Jie Wang in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
[article]
Titre : Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images Type de document : Article/Communication Auteurs : Jie Wang, Auteur ; Xiangming Xiao, Auteur ; Rajen Bajgain, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 189 - 201 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] Leaf Area Index
[Termes IGN] Oklahoma (Etats-Unis)
[Termes IGN] paturage
[Termes IGN] phénologie
[Termes IGN] régression multipleRésumé : (Auteur) Grassland degradation has accelerated in recent decades in response to increased climate variability and human activity. Rangeland and grassland conditions directly affect forage quality, livestock production, and regional grassland resources. In this study, we examined the potential of integrating synthetic aperture radar (SAR, Sentinel-1) and optical remote sensing (Landsat-8 and Sentinel-2) data to monitor the conditions of a native pasture and an introduced pasture in Oklahoma, USA. Leaf area index (LAI) and aboveground biomass (AGB) were used as indicators of pasture conditions under varying climate and human activities. We estimated the seasonal dynamics of LAI and AGB using Sentinel-1 (S1), Landsat-8 (LC8), and Sentinel-2 (S2) data, both individually and integrally, applying three widely used algorithms: Multiple Linear Regression (MLR), Support Vector Machine (SVM), and Random Forest (RF). Results indicated that integration of LC8 and S2 data provided sufficient data to capture the seasonal dynamics of grasslands at a 10–30-m spatial resolution and improved assessments of critical phenology stages in both pluvial and dry years. The satellite-based LAI and AGB models developed from ground measurements in 2015 reasonably predicted the seasonal dynamics and spatial heterogeneity of LAI and AGB in 2016. By comparison, the integration of S1, LC8, and S2 has the potential to improve the estimation of LAI and AGB more than 30% relative to the performance of S1 at low vegetation cover (LAI 2 m2/m2, AGB > 500 g/m2). These results demonstrate the potential of combining S1, LC8, and S2 monitoring grazing tallgrass prairie to provide timely and accurate data for grassland management. Numéro de notice : A2019-269 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.06.007 Date de publication en ligne : 21/06/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.06.007 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93086
in ISPRS Journal of photogrammetry and remote sensing > vol 154 (August 2019) . - pp 189 - 201[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A generalized space-time OBIA classification scheme to map sugarcane areas at regional scale, using Landsat images time-series and the random forest algorithm / Ana Claudia Dos Santos Luciano in International journal of applied Earth observation and geoinformation, vol 80 (August 2019)
[article]
Titre : A generalized space-time OBIA classification scheme to map sugarcane areas at regional scale, using Landsat images time-series and the random forest algorithm Type de document : Article/Communication Auteurs : Ana Claudia Dos Santos Luciano, Auteur ; Michelle Cristina Araújo Picoli, Auteur ; Jansle Vieira Rocha, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 127-136 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse spatio-temporelle
[Termes IGN] apprentissage automatique
[Termes IGN] Brésil
[Termes IGN] carte agricole
[Termes IGN] classification dirigée
[Termes IGN] classification orientée objet
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] extraction de données
[Termes IGN] image à haute résolution
[Termes IGN] image Landsat
[Termes IGN] production agricole
[Termes IGN] Saccharum officinarum
[Termes IGN] série temporelle
[Termes IGN] surface cultivée
[Termes IGN] zone d'intérêtRésumé : (auteur) The monitoring of sugarcane areas is important for sustainable planning and management of the sugarcane industry in Brazil. We developed an operational Object-Based Image Analysis (OBIA) classification scheme, with generalized space-time classifier, for mapping sugarcane areas at the regional scale in São Paulo State (SP). Binary random forest (RF) classification models were calibrated using multi-temporal data from Landsat images, at 10 sites located across SP. Space and time generalization were tested and compared for three approaches: a local calibration and application; a cross-site spatial generalization test with the RF model calibrated on a site and applied on other sites; and a unique space–time classifier calibrated with all sites together on years 2009–2014 and applied to the entire SP region on 2015. The local RF models Dice Coefficient (DC) accuracies at sites 1 to 8 were between 0.83 and 0.92 with an average of 0.89. The cross-site classification accuracy showed an average DC of 0.85, and the unique RF model had a DC of 0.89 when compared with a reference map of 2015. The results demonstrated a good relationship between sugarcane prediction and the reference map for each municipality in SP, with R² = 0.99 and only 5.8% error for the total sugarcane area in SP, and compared with the area inventory from the Brazilian Institute of Geography and Statistics, with R² = 0.95 and –1% error for the total sugarcane area in SP. The final unique RF model allowed monitoring sugarcane plantations at the regional scale on independent year, with efficiency, low-cost, limited resources and a precision approximating that of a photointerpretation. Numéro de notice : A2019-470 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2019.04.013 Date de publication en ligne : 25/04/2019 En ligne : https://doi.org/10.1016/j.jag.2019.04.013 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93612
in International journal of applied Earth observation and geoinformation > vol 80 (August 2019) . - pp 127-136[article]Increasing precision for French forest inventory estimates using the k-NN technique with optical and photogrammetric data and model-assisted estimators / Dinesh Babu Irulappa-Pillai-Vijayakumar in Remote sensing, vol 11 n° 8 (August 2019)PermalinkCombining spatiotemporal fusion and object-based image analysis for improving wetland mapping in complex and heterogeneous urban landscapes / Meng Zhang in Geocarto international, vol 34 n° 10 ([15/07/2019])PermalinkA novel algorithm for differentiating cloud from snow sheets using Landsat 8 OLI imagery / Tingting Wu in Advances in space research, vol 64 n°1 (1 July 2019)PermalinkA novel method for separating woody and herbaceous time series / Qiang Zhou in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 7 (July 2019)PermalinkEvaluating metrics derived from Landsat 8 OLI imagery to map crop cover / Rei Sonobe in Geocarto international, vol 34 n° 8 ([15/06/2019])PermalinkInvestigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data : A case study of Wuhan, Central China / Xin Huang in ISPRS Journal of photogrammetry and remote sensing, vol 152 (June 2019)PermalinkA new stochastic simulation algorithm for image-based classification : Feature-space indicator simulation / Qing Wang in ISPRS Journal of photogrammetry and remote sensing, vol 152 (June 2019)PermalinkObject-based random forest modelling of aboveground forest biomass outperforms a pixel-based approach in a heterogeneous and mountain tropical environment / Eduarda M.O. Silveira in International journal of applied Earth observation and geoinformation, vol 78 (June 2019)PermalinkUsing Sentinel-1A DInSAR interferometry and Landsat 8 data for monitoring water level changes in two lakes in Crete, Greece / D.D. Alexakis in Geocarto international, vol 34 n° 7 ([01/06/2019])PermalinkExamining the sensitivity of spatial scale in cellular automata Markov chain simulation of land use change / Hao Wu in International journal of geographical information science IJGIS, Vol 33 n° 5-6 (May - June 2019)Permalink