Descripteur


Etendre la recherche sur niveau(x) vers le bas
Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database / Collin Homer in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
![]()
[article]
Titre : Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database Type de document : Article/Communication Auteurs : Collin Homer, Auteur ; Jon Dewitz, Auteur ; Suming Jin, Auteur Année de publication : 2020 Article en page(s) : pp 184 - 199 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Advanced Very High Resolution Radiometer
[Termes descripteurs IGN] analyse diachronique
[Termes descripteurs IGN] base de données d'occupation du sol
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] changement d'utilisation du sol
[Termes descripteurs IGN] cultures
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] Etats-Unis
[Termes descripteurs IGN] forêt
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image MODIS
[Termes descripteurs IGN] Medium Resolution Imaging Spectrometer
[Termes descripteurs IGN] surveillance de la végétation
[Termes descripteurs IGN] zone humideRésumé : (auteur) The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov), includes Landsat-based, 30 m resolution products over the conterminous (CONUS) United States (U.S.) for land cover, urban imperviousness, and tree, shrub, herbaceous and bare ground fractional percentages. The release of NLCD 2016 provides important new information on land change patterns across CONUS from 2001 to 2016. For land cover, seven epochs were concurrently generated for years 2001, 2004, 2006, 2008, 2011, 2013, and 2016. Products reveal that land cover change is significant across most land cover classes and time periods. The land cover product was validated using existing reference data from the legacy NLCD 2011 accuracy assessment, applied to the 2011 epoch of the NLCD 2016 product line. The legacy and new NLCD 2011 overall accuracies were 82% and 83%, respectively, (standard error (SE) was 0.5%), demonstrating a small but significant increase in overall accuracy. Between 2001 and 2016, the CONUS landscape experienced significant change, with almost 8% of the landscape having experienced a land cover change at least once during this period. Nearly 50% of that change involves forest, driven by change agents of harvest, fire, disease and pests that resulted in an overall forest decline, including increasing fragmentation and loss of interior forest. Agricultural change represented 15.9% of the change, with total agricultural spatial extent showing only a slight increase of 4778 km2, however there was a substantial decline (7.94%) in pasture/hay during this time, transitioning mostly to cultivated crop. Water and wetland change comprised 15.2% of change and represent highly dynamic land cover classes from epoch to epoch, heavily influenced by precipitation. Grass and shrub change comprise 14.5% of the total change, with most change resulting from fire. Developed change was the most persistent and permanent land change increase adding almost 29,000 km2 over 15 years (5.6% of total CONUS change), with southern states exhibiting expansion much faster than most of the northern states. Temporal rates of developed change increased in 2001–2006 at twice the rate of 2011–2016, reflecting a slowdown in CONUS economic activity. Future NLCD plans include increasing monitoring frequency, reducing latency time between satellite imaging and product delivery, improving accuracy and expanding the variety of products available in an integrated database. Numéro de notice : A2020-121 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.02.019 date de publication en ligne : 03/03/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.02.019 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94746
in ISPRS Journal of photogrammetry and remote sensing > vol 162 (April 2020) . - pp 184 - 199[article]A Fusion Approach for Water Area Classification Using Visible, Near Infrared and Synthetic Aperture Radar for South Asian Conditions / Shahryar K. Ahmad in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
![]()
[article]
Titre : A Fusion Approach for Water Area Classification Using Visible, Near Infrared and Synthetic Aperture Radar for South Asian Conditions Type de document : Article/Communication Auteurs : Shahryar K. Ahmad, Auteur ; Faisal Hossain, Auteur ; Hisham Eldardiry, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 2471 - 2480 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Bangladesh
[Termes descripteurs IGN] climat tropical
[Termes descripteurs IGN] eau de surface
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image PlanetScope
[Termes descripteurs IGN] image proche infrarouge
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] plan d'eau
[Termes descripteurs IGN] radar à antenne synthétique
[Termes descripteurs IGN] reconnaissance de surface
[Termes descripteurs IGN] surveillance hydrologique
[Termes descripteurs IGN] télédétection spatiale
[Termes descripteurs IGN] zone humideRésumé : (auteur) Consistent estimation of water surface area from remote sensing remains challenging in regions such as South Asia with vegetation, mountainous topography, and persistent monsoonal cloud cover. High-resolution optical imagery, which is often used for global inundation mapping, is highly impacted by clouds, while synthetic aperture radar (SAR) imagery is not impacted by clouds and is affected by both topographic layover and vegetation. Here, we compare and contrast inundation extent measurements from visible (Landsat-8 and Sentinel-2) and SAR (Sentinel-1) imagery. Each data type (wavelength) has complementary strengths and weaknesses which were gauged separately over selected water bodies in Bangladesh. High-resolution cloud-free PlanetScope imagery at 3-m resolution was used as a reference to check the accuracy of each technique and data type. Next, the optical and radar images were fused for a rule-based water area classification algorithm to derive the optimal decision for the water mask. Results indicate that the fusion approach can improve the overall accuracy by up to 3.8%, 18.2%, and 8.3% during the wet season over using the individual products of Landsat8, Sentinel-1, and Sentinel-2, respectively, at three sites, while providing increased observational frequency. The fusion-derived products resulted in overall accuracy ranging from 85.8% to 98.7% and Kappa coefficient varying from 0.61 to 0.83. The proposed SAR-visible fusion technique has potential for improving satellite-based surface water monitoring and storage changes, especially for smaller water bodies in humid tropical climate of South Asia. Numéro de notice : A2020-198 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2950705 date de publication en ligne : 19/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2950705 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94868
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 4 (April 2020) . - pp 2471 - 2480[article]GIS-based modeling for selection of dam sites in the Kurdistan region, Iraq / Arsalan Ahmed Othman in ISPRS International journal of geo-information, vol 9 n° 4 (April 2020)
![]()
[article]
Titre : GIS-based modeling for selection of dam sites in the Kurdistan region, Iraq Type de document : Article/Communication Auteurs : Arsalan Ahmed Othman, Auteur ; Ahmed F. Al-Maamar, Auteur ; Diary Ali Mohammed Amin Al-Manmi, Auteur Année de publication : 2020 Article en page(s) : 34 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes descripteurs IGN] analyse multicritère
[Termes descripteurs IGN] barrage
[Termes descripteurs IGN] capacité de stockage
[Termes descripteurs IGN] construction
[Termes descripteurs IGN] gestion de l'eau
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image Quickbird
[Termes descripteurs IGN] Iraq
[Termes descripteurs IGN] jeu de données localisées
[Termes descripteurs IGN] processus d'analyse hiérarchisée floue
[Termes descripteurs IGN] régression géographiquement pondéréeRésumé : (auteur) Iraq, a country in the Middle East, has suffered severe drought events in the past two decades due to a significant decrease in annual precipitation. Water storage by building dams can mitigate drought impacts and assure water supply. This study was designed to identify suitable sites to build new dams within the Al-Khabur River Basin (KhRB). Both the fuzzy analytic hierarchy process (AHP) and the weighted sum method (WSM) were used and compared to select suitable dam sites. A total of 14 layers were used as input dataset (i.e., lithology, tectonic zones, distance to active faults, distance to lineaments, soil type, land cover, hypsometry, slope gradient, average precipitation, stream width, Curve Number Grid, distance to major roads, distance to towns and cities, and distance to villages). Landsat-8/Operational Land Imager (OLI) and QuickBird optical images were used in the study. Three types of accuracies were tested: overall, suitable pixels by number, and suitable pixels by weight. Based on these criteria, we determined that 11 sites are suitable for locating dams for runoff harvesting. Results were compared to the location of 21 preselected dams proposed by the Ministry of Agricultural and Water Resources (MAWR). Three of these dam sites coincide with those proposed by the MAWR. The overall accuracies of the 11 dams ranged between 76.2% and 91.8%. The two most suitable dam sites are located in the center of the study area, with favorable geology, adequate storage capacity, and in close proximity to the population centers. Of the two selection methods, the AHP method performed better as its overall accuracy is greater than that of the WSM. We argue that when stream discharge data are not available, use of high spatial resolution QuickBird imageries to determine stream width for discharge estimation is acceptable and can be used for preliminary dam site selection. The study offers a valuable and relatively inexpensive tool to decision-makers for eliminating sites having severe limitations (less suitable sites) and focusing on those with the least restriction (more suitable sites) for dam construction. Numéro de notice : A2020-265 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9040244 date de publication en ligne : 15/04/2020 En ligne : https://doi.org/10.3390/ijgi9040244 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95028
in ISPRS International journal of geo-information > vol 9 n° 4 (April 2020) . - 34 p.[article]How far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study / Enrico Borgogno Mondino in International Journal of Remote Sensing IJRS, vol 41 n°12 (20 - 30 March 2020)
![]()
[article]
Titre : How far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study Type de document : Article/Communication Auteurs : Enrico Borgogno Mondino, Auteur ; Vanina Fissore, Auteur ; Michael J. Falkowski, Auteur ; Brian Palik, Auteur Année de publication : 2020 Article en page(s) : pp 4551 - 4569 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] auscultation topographique
[Termes descripteurs IGN] diamètre des arbres
[Termes descripteurs IGN] données dendrométriques
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] feuillu
[Termes descripteurs IGN] hauteur des arbres
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] inventaire forestier local
[Termes descripteurs IGN] Minnesota (Etats-Unis)
[Termes descripteurs IGN] modèle d'erreur
[Termes descripteurs IGN] pinophyta
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] structure d'un peuplement forestier
[Termes descripteurs IGN] surface forestière
[Termes descripteurs IGN] télémètre laser aéroportéRésumé : (auteur) Aerial discrete return LiDAR (Light Detection And Ranging) technology (ALS – Aerial Laser Scanner) is now widely used for forest characterization due to its high accuracy in measuring vertical and horizontal forest structure. Random and systematic errors can still occur and these affect the native point cloud, ultimately degrading ALS data accuracy, especially when adopting datasets that were not natively designed for forest applications. A detailed understanding of how uncertainty of ALS data could affect the accuracy of derivable forest metrics (e.g. tree height, stem diameter, basal area) is required, looking for eventual error biases that can be possibly modelled to improve final accuracy. In this work a low-density ALS dataset, originally acquired by the State of Minnesota (USA) for non-forestry related purposes (i.e. topographic mapping), was processed attempting to characterize forest inventory parameters for the Cutfoot Sioux Experimental Forest (north-central Minnesota, USA). Since accuracy of estimates strictly depends on the applied species-specific dendrometric models a first required step was to map tree species over the forest. A rough classification, aiming at separating conifers from broadleaf, was achieved by processing a Landsat 8 OLI (Operational Land Imager) scene. ALS-derived forest metrics initially greatly overestimated those measured at the ground in 230 plots. Conversely, ALS-derived tree density was greatly underestimated. To reduce ALS uncertainty, trees belonging to the dominated plane were removed from the ground dataset, assuming that they could not properly be detected by low-density ALS measures. Consequently, MAE (Mean Absolute Error) values significantly decreased to 4.0 m for tree height and to 0.19 cm for diameter estimates. Remaining discrepancies were related to a bias affecting the native ALS point cloud, which was modelled and removed. Final MAE values were 1.32 m for tree height, 0.08 m for diameter, 8.5 m2 ha−1 for basal area, and 0.06 m for quadratic mean diameter. Specifically focusing on tree height and diameter estimates, the significance of differences between ground and ALS estimates was tested relative to the expected ‘best accuracy’. Results showed that after correction: 94.35% of tree height differences were lower than the corresponding reference value (2.86 m); 70% of tree diameter differences were lower than the corresponding reference value (4.5 cm for conifers and 6.8 cm for broadleaf). Finally, forest parameters were computed for the whole Cutfoot Sioux Experimental Forest. Main findings include: 1) all forest estimates based on a low-density ALS point cloud can be derived at plot level and not at a tree level; 2) tree height estimates obtained by low-density ALS point clouds at the plot level are highly reasonably accurate only after testing and modelling eventual error bias; 3) diameter, basal area, and quadratic mean diameter estimates have large uncertainties, suggesting the need for a higher point density and, probably, a better mapping of tree species (if possible) than achieved with a remote sensing-based approach. Numéro de notice : A2020-450 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431161.2020.1723173 date de publication en ligne : 20/02/2020 En ligne : https://doi.org/10.1080/01431161.2020.1723173 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95535
in International Journal of Remote Sensing IJRS > vol 41 n°12 (20 - 30 March 2020) . - pp 4551 - 4569[article]An original method for tree species classification using multitemporal multispectral and hyperspectral satellite data / Olga Grigorieva in Silva fennica, vol 54 n° 2 (March 2020)
![]()
[article]
Titre : An original method for tree species classification using multitemporal multispectral and hyperspectral satellite data Type de document : Article/Communication Auteurs : Olga Grigorieva, Auteur ; Olga Brovkina, Auteur ; Alisher Saidov, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Betula (genre)
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] classification
[Termes descripteurs IGN] erreur de classification
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] phénologie
[Termes descripteurs IGN] Pinus (genre)
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] République Tchèque
[Termes descripteurs IGN] Russie
[Termes descripteurs IGN] signature spectrale
[Termes descripteurs IGN] variation saisonnièreRésumé : (auteur) his study proposes an original method for tree species classification by satellite remote sensing. The method uses multitemporal multispectral (Landsat OLI) and hyperspectral (Resurs-P) data acquired from determined vegetation periods. The method is based on an original database of spectral features taking into account seasonal variations of tree species spectra. Changes in the spectral signatures of forest classes are analyzed and new spectral–temporal features are created for the classification. Study sites are located in the Czech Republic and northwest (NW) Russia. The differences in spectral reflectance between tree species are shown as statistically significant in the sub-seasons of spring, first half of summer, and main autumn for both study sites. Most of the errors are related to the classification of deciduous species and misclassification of birch as pine (NW Russia site), pine as mixture of pine and spruce, and pine as mixture of spruce and beech (Czech site). Forest species are mapped with accuracy as high as 80% (NW Russia site) and 81% (Czech site). The classification using multitemporal multispectral data has a kappa coefficient 1.7 times higher than does that of classification using a single multispectral image and 1.3 times greater than that of the classification using single hyperspectral images. Potentially, classification accuracy can be improved by the method when applying multitemporal satellite hyperspectral data, such as in using new, near-future products EnMap and/or HyspIRI with high revisit time. Numéro de notice : A2020-324 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.10143 date de publication en ligne : 02/03/2020 En ligne : https://doi.org/10.14214/sf.10143 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95198
in Silva fennica > vol 54 n° 2 (March 2020)[article]Assessing environmental impacts of urban growth using remote sensing / John C. Trinder in Geo-spatial Information Science, vol 23 n° 1 (March 2020)
PermalinkSea-land segmentation using deep learning techniques for Landsat-8 OLI imagery / Ting Yang in Marine geodesy, Vol 43 n° 2 (March 2020)
PermalinkSpectral–spatial–temporal MAP-based sub-pixel mapping for land-cover change detection / Da He in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
PermalinkThermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis / Jiong Wang in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
PermalinkComputer vision-based framework for extracting tectonic lineaments from optical remote sensing data / Ehsan Farahbakhsh in International Journal of Remote Sensing IJRS, vol 41 n°5 (01 - 08 février 2020)
PermalinkLandslide susceptibility mapping using maximum entropy and support vector machine models along the highway corridor, Garhwal Himalaya / Vijendra Kumar Pandey in Geocarto international, vol 35 n° 2 ([01/02/2020])
PermalinkA novel fire index-based burned area change detection approach using Landsat-8 OLI data / Sicong Liu in European journal of remote sensing, vol 53 n° 1 (2020)
PermalinkTransferring deep learning models for cloud detection between Landsat-8 and Proba-V / Gonzalo Mateo-García in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
PermalinkRegional-scale forest mapping over fragmented landscapes using global forest products and Landsat time series classification / Viktor Myroniuk in Remote sensing, vol 12 n° 1 (January 2020)
PermalinkComparison of multi-seasonal Landsat 8, Sentinel-2 and hyperspectral images for mapping forest alliances in Northern California / Matthew L. Clark in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
Permalink