Descripteur


Etendre la recherche sur niveau(x) vers le bas
Comparison of multi-seasonal Landsat 8, Sentinel-2 and hyperspectral images for mapping forest alliances in Northern California / Matthew L. Clark in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
![]()
[article]
Titre : Comparison of multi-seasonal Landsat 8, Sentinel-2 and hyperspectral images for mapping forest alliances in Northern California Type de document : Article/Communication Auteurs : Matthew L. Clark, Auteur Année de publication : 2020 Article en page(s) : pp 26 - 40 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] Californie (Etats-Unis)
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] couvert végétal
[Termes descripteurs IGN] image AVIRIS
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] Short Waves InfraRedRésumé : (Auteur) The current era of earth observation now provides constellations of open-access, multispectral satellite imagery with medium spatial resolution, greatly increasing the frequency of cloud-free data for analysis. The Landsat satellites have a long historical record, while the newer Sentinel-2 (S2) satellites offer higher temporal, spatial and spectral resolution. The goal of this study was to evaluate the relative benefits of single- and multi-seasonal multispectral satellite data for discriminating detailed forest alliances, as defined by the U.S. National Vegetation Classification system, in a Mediterranean-climate landscape (Sonoma County, California). Results were compared to a companion analysis of simulated hyperspectral satellite data (HyspIRI) for the same study site and reference data (Clark et al., 2018). Experiments used real and simulated S2 and Landsat 8 (L8) data. Simulated S2 and L8 were from HyspIRI images, thereby focusing results on differences in spectral resolution rather than other confounding factors. The Support Vector Machine (SVM) classifier was used in a hierarchical classification of land-cover (Level 1), followed by alliances (Level 2) in forest pixels, and included summer-only and multi-seasonal sets of predictor variables (bands, indices and bands plus indices). Both real and simulated multi-seasonal multispectral variables significantly improved overall accuracy (OA) by 0.2–1.6% for Level 1 tree/no tree classifications and 3.6–25.8% for Level 2 forest alliances. Classifiers with S2 variables tended to be more accurate than L8 variables, particularly for S2, which had 0.4–2.1% and 5.1–11.8% significantly higher OA than L8 for Level 1 tree/no tree and Level 2 forest alliances, respectively. Combining multispectral bands and indices or using just bands was generally more accurate than relying on just indices for classification. Simulated HyspIRI variables from past research had significantly greater accuracy than real L8 and S2 variables, with an average OA increase of 8.2–12.6%. A final alliance-level map used for a deeper analysis used simulated multi-seasonal S2 bands and indices, which had an overall accuracy of 74.3% (Kappa = 0.70). The accuracy of this classification was only 1.6% significantly lower than the best HyspIRI-based classification, which used multi-seasonal metrics (Clark et al., 2018), and there were alliances where the S2-based classifier was more accurate. Within the context of these analyses and study area, S2 spectral-temporal data demonstrated a strong capability for mapping global forest alliances, or similar detailed floristic associations, at medium spatial resolutions (10–30 m). Numéro de notice : A2020-011 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.11.007 date de publication en ligne : 14/11/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.11.007 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94399
in ISPRS Journal of photogrammetry and remote sensing > vol 159 (January 2020) . - pp 26 - 40[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020011 SL Revue Centre de documentation Revues en salle Disponible 081-2020013 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Identification of alpine glaciers in the central Himalayas using fully polarimetric L-Band SAR data / Guo-Hui Yao in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)
![]()
[article]
Titre : Identification of alpine glaciers in the central Himalayas using fully polarimetric L-Band SAR data Type de document : Article/Communication Auteurs : Guo-Hui Yao, Auteur ; Chang-qing Ke, Auteur ; Xiaobing Zhou, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 691 - 703 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] analyse multiéchelle
[Termes descripteurs IGN] bande L
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] glacier
[Termes descripteurs IGN] Himalaya
[Termes descripteurs IGN] image ALOS-PALSAR
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] interferométrie différentielle
[Termes descripteurs IGN] matrice de covariance
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] segmentationRésumé : (auteur) To study the applicability of full polarimetric synthetic aperture radar (SAR) data to identify alpine glaciers in the central Himalayas, six polarimetric decomposition methods were used to obtain 20 polarimetric characteristic parameters based on the Advanced Land Observing Satellite 2 (ALOS-2) Phased Array type L-band SAR (PALSAR) data. Object-oriented multiscale segmentation was performed on a Landsat 8 Operational Land Imager (OLI) image prior to classification, and the vector boundaries of different types of training samples were selected from the segmented results. We performed a support vector machine (SVM)-based classification on the characteristic parameters from each polarimetric decomposition. All 20 parameters were then screened and combined according to different requirements: the degree of separability of different types of training samples and the type of scattering mechanisms. The results show that the classification accuracy of the incoherent decomposition characteristics based on the covariance matrix is the best, reaching 87%, and it can exceed 91% after adding the local incidence angle to the suite of classifiers. Eventually, more than 93% accuracy was achieved using a combination of multiple polarimetric parameters, which reduced the misclassification between bare ice and rock. We also analyzed the use of controlling factors on the accuracy of alpine glacier identification and found that the polarimetric information and aspect of the glacier surface are the most important factors. The former is the main basis for identification but the latter will confuse the feature distributions of different categories and cause misclassification. Numéro de notice : A2020-077 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2939430 date de publication en ligne : 25/09/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2939430 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94613
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 1 (January 2020) . - pp 691 - 703[article]
Titre : Remote Sensing Applications for Agriculture and Crop Modelling Type de document : Monographie Auteurs : Piero Toscano, Editeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2020 Collection : Agronomy Importance : 310 p. ISBN/ISSN/EAN : ISBN 978-3-03928-227-2 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] agriculture
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] carte d'utilisation du sol
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] changement d'occupation du sol
[Termes descripteurs IGN] engrais chimique
[Termes descripteurs IGN] image infrarouge
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] surface cultivéeRésumé : (éditeur) Crop models and remote sensing techniques have been combined and applied in agriculture and crop estimation on local and regional scales, or worldwide, based on the simultaneous development of crop models and remote sensing. The literature shows that many new remote sensing sensors and valuable methods have been developed for the retrieval of canopy state variables and soil properties from remote sensing data for assimilating the retrieved variables into crop models. At the same time, remote sensing has been used in a staggering number of applications for agriculture. This book sets the context for remote sensing and modelling for agricultural systems as a mean to minimize the environmental impact, while increasing production and productivity. The eighteen papers published in this Special Issue, although not representative of all the work carried out in the field of Remote Sensing for agriculture and crop modeling, provide insight into the diversity and the complexity of developments of RS applications in agriculture. Five thematic focuses have emerged from the published papers: yield estimation, land cover mapping, soil nutrient balance, time-specific management zone delineation and the use of UAV as agricultural aerial sprayers. All contributions exploited the use of remote sensing data from different platforms (UAV, Sentinel, Landsat, QuickBird, CBERS, MODIS, WorldView), their assimilation into crop models (DSSAT, AQUACROP, EPIC, DELPHI) or on the synergy of Remote Sensing and modeling, applied to cardamom, wheat, tomato, sorghum, rice, sugarcane and olive. The intended audience is researchers and postgraduate students, as well as those outside academia in policy and practice. Numéro de notice : 25747 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Recueil / ouvrage collectif En ligne : https://www.mdpi.com/books/pdfview/book/2023 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94932
Titre : Remote Sensing Technology Applications in Forestry and REDD+ Type de document : Monographie Auteurs : Kim Calders, Editeur scientifique ; Inge Jonckheere, Editeur scientifique ; Mikko Vastaranta, Editeur scientifique ; Joanne Nightingale, Editeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2020 Importance : 244 p. ISBN/ISSN/EAN : 978-3-03928-471-9 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] biomasse aérienne
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] déboisement
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] image Landsat
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image Sentinel
[Termes descripteurs IGN] Pinus massoniana
[Termes descripteurs IGN] polarimétrie radar
[Termes descripteurs IGN] télémétrie laser aéroporté
[Termes descripteurs IGN] télémétrie laser terrestreRésumé : (Editeur) Advances in close-range and remote sensing technologies are driving innovations in forest resource assessments and monitoring on varying scales. Data acquired with airborne and spaceborne platforms provide high(er) spatial resolution, more frequent coverage, and more spectral information. Recent developments in ground-based sensors have advanced 3D measurements, low-cost permanent systems, and community-based monitoring of forests. The UNFCCC REDD+ mechanism has advanced the remote sensing community and the development of forest geospatial products that can be used by countries for the international reporting and national forest monitoring. However, an urgent need remains to better understand the options and limitations of remote and close-range sensing techniques in the field of forest degradation and forest change. Therefore, we invite scientists working on remote sensing technologies, close-range sensing, and field data to contribute to this Special Issue. Topics of interest include: (1) novel remote sensing applications that can meet the needs of forest resource information and REDD+ MRV, (2) case studies of applying remote sensing data for REDD+ MRV, (3) timeseries algorithms and methodologies for forest resource assessment on different spatial scales varying from the tree to the national level, and (4) novel close-range sensing applications that can support sustainable forestry and REDD+ MRV. We particularly welcome submissions on data fusion. Numéro de notice : 26296 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Monographie DOI : 10.3390/books978-3-03928-471-9 date de publication en ligne : 07/04/2020 En ligne : https://doi.org/10.3390/books978-3-03928-471-9 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95009 A systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems / Dong Chen in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
![]()
[article]
Titre : A systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems Type de document : Article/Communication Auteurs : Dong Chen, Auteur ; Tatiana V. Loboda, Auteur ; Joanne V. Hall, Auteur Année de publication : 2020 Article en page(s) : pp 63 - 77 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Alaska (Etats-Unis)
[Termes descripteurs IGN] Canada
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] écosystème forestier
[Termes descripteurs IGN] forêt boréale
[Termes descripteurs IGN] image Landsat
[Termes descripteurs IGN] incendie de forêt
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] perturbation écologique
[Termes descripteurs IGN] Short Waves InfraRed
[Termes descripteurs IGN] toundraRésumé : (Auteur) Satellite imagery has been widely used for the assessment of wildfire burn severity within the scientific community and fire management agencies. Multiple indices have been proposed to assess burn severity, among which the differenced Normalized Burn Ratio (dNBR) is arguably the most commonly used index that is expected to provide an objective and consistent assessment. However, although evidence of variability in the dNBR-based assessment of burn severity driven by image pair selection has been shown in many studies, the comprehensive examination of the extent of the bias resulting from the image selection has been lacking. In this study, we focus on three factors of the image selection process which are encountered by most Landsat-derived dNBR applications, including the sensor combination and the difference in timing of image acquisition (for both the year and seasonality) of pre- and post-fire image pairs. Through separate analyses, each targeting a single factor, we show that Landsat sensor combination between the pre- and post-fire images has a limited impact on the dNBR values. The difference in the year of acquisition between the images in the image pairs is shown to influence dNBR assessment with a noticeable increase in mean dNBR (>0.1) with only a single year difference between images compared to multi-year differences. However, differences in the image acquisition seasons and the resulting phenological differences is shown to impact dNBR values most considerably. Based on our results, we warn against the calculation of dNBR when the images are acquired in different seasons. We believe that despite the existence of multiple derivatives of dNBR, there remains a need for an improved version; one that is less susceptible to the phenological impacts introduced by the selected images. Numéro de notice : A2020-012 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.11.011 date de publication en ligne : 19/11/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.11.011 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94400
in ISPRS Journal of photogrammetry and remote sensing > vol 159 (January 2020) . - pp 63 - 77[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020011 SL Revue Centre de documentation Revues en salle Disponible 081-2020013 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Comparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images / Cheolhee Yoo in ISPRS Journal of photogrammetry and remote sensing, vol 157 (November 2019)
PermalinkUtilisation des SIG et de la télédétection pour la cartographie de la susceptibilité aux mouvements d'instabilité de versant dans l'Ouest montagneux de la Côte d'Ivoire / Boyossoro Hélène Kouadio in Revue Française de Photogrammétrie et de Télédétection, n° 221 (novembre 2019)
PermalinkPotential of Landsat-8 and Sentinel-2A composite for land use land cover analysis / Divyesh Varade in Geocarto international, vol 34 n° 14 ([30/10/2019])
PermalinkResidences information extraction from Landsat imagery using the multi-parameter decision tree method / Yujie Yang in Geocarto international, vol 34 n° 14 ([30/10/2019])
PermalinkEvolution of sand encroachment using supervised classification of Landsat data during the period 1987–2011 in a part of Laâyoune-Tarfaya basin of Morocco / Ali Aydda in Geocarto international, vol 34 n° 13 ([15/10/2019])
PermalinkLandsats 1–5 multispectral scanner system sensors radiometric calibration update / Cibele Teixeira-Pinto in IEEE Transactions on geoscience and remote sensing, Vol 57 n° 10 (October 2019)
PermalinkMultitemporal Landsat-MODIS fusion for cropland drought monitoring in El Salvador / Nguyen-Thanh Son in Geocarto international, vol 34 n° 12 ([15/09/2019])
PermalinkChange detection work-flow for mapping changes from arable lands to permanent grasslands with advanced boosting methods / Jiří Šandera in Geodetski vestnik, vol 63 n° 3 (September - November 2019)
PermalinkExploring the synergy between Landsat and ASAR towards improving thematic mapping accuracy of optical EO data / Alexander Cass in Applied geomatics, vol 11 n° 3 (September 2019)
PermalinkImplementing Moran eigenvector spatial filtering for massively large georeferenced datasets / Daniel A. Griffith in International journal of geographical information science IJGIS, vol 33 n° 9 (September 2019)
Permalink