Descripteur


Etendre la recherche sur niveau(x) vers le bas
sing data usinAutomatic atmospheric correction for shortwave hyperspectral remote seng a time-dependent deep neural network / Jian Sun in ISPRS Journal of photogrammetry and remote sensing, Vol 174 (April 2021)
![]()
[article]
Titre : sing data usinAutomatic atmospheric correction for shortwave hyperspectral remote seng a time-dependent deep neural network Type de document : Article/Communication Auteurs : Jian Sun, Auteur ; Fangcao Xu, Auteur ; Guido Cervone, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 117 - 131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] correction atmosphérique
[Termes descripteurs IGN] détection de cible
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] modèle de transfert radiatif
[Termes descripteurs IGN] rayonnement solaire
[Termes descripteurs IGN] réflectivitéRésumé : (auteur) Atmospheric correction is an essential step in hyperspectral imaging and target detection from spectrometer remote sensing data. State-of-the-art atmospheric correction approaches either require extensive filed experiments or prior knowledge of atmospheric characteristics to improve the predicted accuracy, which are computational expensive and unsuitable for real time application. To take full advantages of remote sensing observation in quickly and reliably acquiring data for a large area, an automatic and efficient processing tool is required for atmospheric correction. In this paper, we propose a time-dependent neural network for automatic atmospheric correction and target detection using multi-scan hyperspectral data under different elevation angles. In addition to the total radiance, the collection day and time are also incorporated to improve the time-dependency of the network and represent the seasonal and diurnal characteristics of atmosphere and solar radiation. Results show that the proposed network has the capacity to accurately provide atmospheric characteristics and estimate precise reflectivity spectra with 95,72% averaged accuracy for different materials, including vegetation, sea ice, and ocean. Additional experiments are designed to investigate the network’s temporal dependency and performance on missing data. The error analysis confirms that our proposed network is capable of estimating atmospheric characteristics under both seasonally and diurnally varying environments and handling the influence of missing data. Both the predicted results and error analysis are promising and demonstrate that our network has the ability of providing accurate atmospheric correction and target detection in real time. Numéro de notice : A2021-208 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.02.007 date de publication en ligne : 24/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.02.007 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97186
in ISPRS Journal of photogrammetry and remote sensing > Vol 174 (April 2021) . - pp 117 - 131[article]Improving the unsupervised mapping of riparian bugweed in commercial forest plantations using hyperspectral data and LiDAR / Kabir Peerbhay in Geocarto international, vol 36 n° 4 ([15/03/2021])
![]()
[article]
Titre : Improving the unsupervised mapping of riparian bugweed in commercial forest plantations using hyperspectral data and LiDAR Type de document : Article/Communication Auteurs : Kabir Peerbhay, Auteur ; Onisimo Mutanga, Auteur ; Romano Lottering, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 465 - 480 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] espèce exotique envahissante
[Termes descripteurs IGN] forêt ripicole
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] précision cartographique
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) Accurate spatial information on the location of invasive alien plants (IAPs) in riparian environments is critical to fulfilling a comprehensive weed management regime. This study aimed to automatically map the occurrence of riparian bugweed (Solanum mauritianum) using airborne AISA Eagle hyperspectral data (393 nm–994 nm) in conjunction with LiDAR derived height. Utilising an unsupervised random forest (RF) classification approach and Anselin local Moran’s I clustering, results indicate that the integration of LiDAR with minimum noise fraction (MNF) produce the best detection rate (DR) of 88%, the lowest false positive rate (FPR) of 7.14% and an overall mapping accuracy of 83% for riparian bugweed. In comparison, utilising the original hyperspectral wavebands with and without LiDAR produced lower DRs and higher FPRs with overall accuracies of 79% and 68% respectively. This research demonstrates the potential of combining spectral information with LiDAR to accurately map IAPs using an automated unsupervised RF anomaly detection framework. Numéro de notice : A2021-163 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1614101 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1614101 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97084
in Geocarto international > vol 36 n° 4 [15/03/2021] . - pp 465 - 480[article]Characterizing urban land changes of 30 global megacities using nighttime light time series stacks / Qiming Zheng in ISPRS Journal of photogrammetry and remote sensing, Vol 173 (March 2021)
![]()
[article]
Titre : Characterizing urban land changes of 30 global megacities using nighttime light time series stacks Type de document : Article/Communication Auteurs : Qiming Zheng, Auteur ; Qihao Weng, Auteur ; Ke Wang, Auteur Année de publication : 2021 Article en page(s) : pp 10 - 23 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] aménagement foncier
[Termes descripteurs IGN] analyse harmonique
[Termes descripteurs IGN] cartographie urbaine
[Termes descripteurs IGN] changement d'utilisation du sol
[Termes descripteurs IGN] croissance urbaine
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] détection du bâti
[Termes descripteurs IGN] éclairage public
[Termes descripteurs IGN] image infrarouge
[Termes descripteurs IGN] image VIIRS
[Termes descripteurs IGN] mégalopole
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) Worldwide urbanization has brought about diverse types of urban land use and land cover (LULC) changes. The diversity of urban land changes, however, have been greatly under studied, since the major focus of past research has been on urban growth. In this study, we proposed a framework to characterize diverse urban land changes of 30 global megacities using monthly nighttime light time series from VIIRS data. First, we developed a Logistic-Harmonic model to fit VIIRS time series. Second, by leveraging the uniqueness of urban land change and nighttime light data, we incorporated temporal information of VIIRS time series and proposed a new classification scheme to produce monthly maps of built-up areas and to disentangle urban land changes into five categories. Third, we provided an in-depth analysis and comparison of urban land change patterns of the selected megacities. Results demonstrated that the Logistic-Harmonic model yielded a robust performance in fitting VIIRS time series. Temporal features based classification can not only significantly improve the mapping accuracy of built-up areas, especially for regions with heterogeneous built-up and non-built-up landscapes, but also promoted temporal consistency and classification efficiency. Urban land changes occurred in 51% of the built-up pixels of the megacities. Compared with urban growth, other types of urban land change, particularly land use intensification, contributed to an unexpectedly large proportion of the changes (83%). The findings of this study offer an insightful understanding on global urbanization processes in megacities, and evoke further investigation on the environmental and ecological implications of urban land changes. Numéro de notice : A2021-101 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.002 date de publication en ligne : 16/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.002 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96873
in ISPRS Journal of photogrammetry and remote sensing > Vol 173 (March 2021) . - pp 10 - 23[article]Performance evaluation of artificial neural networks for natural terrain classification / Perpetual Hope Akwensi in Applied geomatics, vol 13 n° 1 (March 2021)
![]()
[article]
Titre : Performance evaluation of artificial neural networks for natural terrain classification Type de document : Article/Communication Auteurs : Perpetual Hope Akwensi, Auteur ; Eric Thompson Brantson, Auteur ; Johanna Ngula Niipele, Auteur ; et al., Auteur Année de publication : 2021 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Afrique occidentale
[Termes descripteurs IGN] classification par nuées dynamiques
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] fonction de base radiale
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] inventaire de la végétation
[Termes descripteurs IGN] réalité de terrain
[Termes descripteurs IGN] regroupement de données
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] segmentation d'imageRésumé : (auteur) Remotely sensed image segmentation and classification form a very important part of remote sensing which involves geo-data processing and analysis. Artificial neural networks (ANNs) are powerful machine learning approaches that have been successfully implemented in numerous fields of study. There exist many kinds of neural networks and there is no single efficient approach for resolving all geospatial problems. Therefore, this research aims at investigating and evaluating the efficiency of three ANN approaches, namely, backpropagation neural network (BPNN), radial basis function neural network (RBFNN), and Elman backpropagation recurrent neural network (EBPRNN) using multi-spectral satellite images for terrain feature classification. Additionally, there has been close to no application of EBPRNN in modeling multi-spectral satellite images even though they also contain patterns. The efficiency of the three tested approaches is presented using the kappa coefficient, user’s accuracy, producer’s accuracy, overall accuracy, classification error, and computational simulation time. The study demonstrated that all the three ANN models achieved the aim of pattern identification, segmentation, and classification. This paper also discusses the observations of increasing sample sizes as inputs in the various ANN models. It was concluded that RBFNN’s computational time increases with increasing sample size and consequently increasing the number of hidden neurons; BPNN on overall attained the highest accuracy compared to the other models; EBPRNN’s accuracy increases with increasing sample size, hence a promising and perhaps an alternative choice to BPNN and RBFNN if very large datasets are involved. Based on the performance metrics used in this study, BPNN is the best model out of the three evaluated ANN models. Numéro de notice : A2021-223 Affiliation des auteurs : non IGN Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s12518-021-00360-9 date de publication en ligne : 13/02/2021 En ligne : https://doi.org/10.1007/s12518-021-00360-9 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97194
in Applied geomatics > vol 13 n° 1 (March 2021)[article]Correntropy-based spatial-spectral robust sparsity-regularized hyperspectral unmixing / Xiaorun Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
![]()
[article]
Titre : Correntropy-based spatial-spectral robust sparsity-regularized hyperspectral unmixing Type de document : Article/Communication Auteurs : Xiaorun Li, Auteur ; Risheng Huang, Auteur ; Liaolying Zhao, Auteur Année de publication : 2021 Article en page(s) : pp 1453 - 1471 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse des mélanges spectraux
[Termes descripteurs IGN] corrélation
[Termes descripteurs IGN] entropie
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] méthode robuste
[Termes descripteurs IGN] signature spectraleRésumé : (auteur) Hyperspectral unmixing (HU) is a crucial technique for exploiting remotely sensed hyperspectral data, which aims at estimating a set of spectral signatures, called endmembers and their corresponding proportions, called abundances. The performance of HU is often seriously degraded by various kinds of noise existing in hyperspectral images (HSIs). Most of existing robust HU methods are based on the assumption that noise or outlier only exists in one kind of formulation, e.g., band noise or pixel noise. However, in real-world applications, HSIs are unavoidably corrupted by noisy bands and noisy pixels simultaneously, which require robust HU in both the spatial dimension and spectral dimension. Meanwhile, the sparsity of abundances is an inherent property of HSIs and different regions in an HSI may possess various sparsity levels across locations. This article proposes a correntropy-based spatial-spectral robust sparsity-regularized unmixing model to achieve 2-D robustness and adaptive weighted sparsity constraint for abundances simultaneously. The updated rules of the proposed model are efficient to be implemented and carried out by a half-quadratic technique. The experimental results obtained by both synthetic and real hyperspectral data demonstrate the superiority of the proposed method compared to the state-of-the-art methods. Numéro de notice : A2021-116 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2999936 date de publication en ligne : 16/06/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2999936 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96930
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 1453 - 1471[article]Fully convolutional neural network for impervious surface segmentation in mixed urban environment / Joseph McGlinchy in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 2 (February 2021)
PermalinkGTP-PNet: A residual learning network based on gradient transformation prior for pansharpening / Hao Zhang in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
PermalinkSpruce budworm tree host species distribution and abundance mapping using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery / Rajeev Bhattarai in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
PermalinkHyperspectral and multispectral image fusion via graph Laplacian-guided coupled tensor decomposition / Yuanyang Bu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkRetrieving surface soil water content using a soil texture adjusted vegetation index and unmanned aerial system images / Haibin Gu in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkA review of image fusion techniques for pan-sharpening of high-resolution satellite imagery / Farzaneh Dadrass Javan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkSuper-resolution of VIIRS-measured ocean color products using deep convolutional neural network / Xiaoming Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkA framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data / Minkyung Chung in Remote sensing, vol 12 n° 22 (December 2020)
PermalinkHyperspectral band selection via optimal neighborhood reconstruction / Qi Wang in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkMultistrategy ensemble regression for mapping of built-up density and height with Sentinel-2 data / Christian Geiss in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
Permalink