Descripteur
Termes IGN > imagerie > image spatiale > image satellite > image Landsat > image Landsat-TM
image Landsat-TM |
Documents disponibles dans cette catégorie (492)



Etendre la recherche sur niveau(x) vers le bas
Large-scale burn severity mapping in multispectral imagery using deep semantic segmentation models / Xikun Hu in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
![]()
[article]
Titre : Large-scale burn severity mapping in multispectral imagery using deep semantic segmentation models Type de document : Article/Communication Auteurs : Xikun Hu, Auteur ; Puzhao Zhang, Auteur ; Yifang Ban, Auteur Année de publication : 2023 Article en page(s) : pp 228 - 240 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] dommage
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] incendie de forêt
[Termes IGN] jeu de données localisées
[Termes IGN] segmentation sémantique
[Termes IGN] surveillance forestière
[Termes IGN] zone sinistréeRésumé : (auteur) Nowadays Earth observation satellites provide forest fire authorities and resource managers with spatial and comprehensive information for fire stabilization and recovery. Burn severity mapping is typically performed by classifying bi-temporal indices (e.g., dNBR, and RdNBR) using thresholds derived from parametric models incorporating field-based measurements. Analysts are currently expending considerable manual effort using prior knowledge and visual inspection to determine burn severity thresholds. In this study, we aim to employ highly automated approaches to provide spatially explicit damage level estimates. We first reorganize a large-scale Landsat-based bi-temporal burn severity assessment dataset (Landsat-BSA) by visual data cleaning based on annotated MTBS data (approximately 1000 major fire events in the United States). Then we apply state-of-the-art deep learning (DL) based methods to map burn severity based on the Landsat-BSA dataset. Experimental results emphasize that multi-class semantic segmentation algorithms can approximate the threshold-based techniques used extensively for burn severity classification. UNet-like models outperform other region-based CNN and Transformer-based models and achieve accurate pixel-wise classification results. Combined with the online hard example mining algorithm to reduce class imbalance issue, Attention UNet achieves the highest mIoU (0.78) and the highest Kappa coefficient close to 0.90. The bi-temporal inputs with ancillary spectral indices work much better than the uni-temporal multispectral inputs. The restructured dataset will be publicly available and create opportunities for further advances in remote sensing and wildfire communities. Numéro de notice : A2023-122 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.026 Date de publication en ligne : 11/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.026 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102498
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 228 - 240[article]A new strategy for improving the accuracy of forest aboveground biomass estimates in an alpine region based on multi-source remote sensing / Yali Zhang in GIScience and remote sensing, vol 60 n° 1 (2023)
![]()
[article]
Titre : A new strategy for improving the accuracy of forest aboveground biomass estimates in an alpine region based on multi-source remote sensing Type de document : Article/Communication Auteurs : Yali Zhang, Auteur ; Ni Wang, Auteur ; Yuliang Wang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2163574 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] biomasse forestière
[Termes IGN] carte forestière
[Termes IGN] Chine
[Termes IGN] données multisources
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] phénologie
[Termes IGN] puits de carbone
[Termes IGN] santé des forêtsRésumé : (auteur) Spatially explicit information on the distribution of dominant tree species groups and aboveground biomass (AGB) in forested areas is essential for developing targeted forest management and biodiversity conservation measures, as well as assessing forest carbon sequestration capacity. There is a shortage of continuously updated 30-m spatial resolution products for mapping dominant tree species groups. The vast majority of remote sensing-based AGB estimation approaches have relatively low accuracy for dominant tree species groups or forest types and are unsuitable for AGB modeling. Therefore, this study aims to develop an integrated framework that considers the phenological characteristics of different tree species to improve the mapping accuracies of forest dominant tree groups and corresponding AGB estimates. Thirty-meter resolution maps of dominant tree species groups were created using machine learning algorithms and phenological parameters. Features extracted from optical and radar images and phenological characteristics were used to construct AGB estimation models in a temporally consistent manner to improve the AGB estimation accuracy and perform dynamic AGB monitoring. The proposed method accurately characterized the dynamic distribution of the dominant tree species groups in the study area. The traditional AGB model that does not consider different forest types or species had an R2 value of 0.52, whereas the proposed model that considers phenology and forest types had an R2 value of 0.67. This result indicates that incorporating information on phenology and dominant species improves the accuracy of AGB estimations. The AGB in most regions was 30–55 t/ha, showing that the majority of the forests were young or middle-aged stands, and the areal percentage of AGB greater than 30 t/ha increased during the study period, suggesting an improvement in forest quality. Furthermore, the oak AGB was the highest, indicating that oak afforestation should be encouraged to enhance the carbon sequestration capacity of future forest ecosystems. The results provide new insights for researchers and managers to understand the trends of forest development and forest health, as well as technical information and a database for formulating more rational forest management strategies. Numéro de notice : A2023-121 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1080/15481603.2022.2163574 Date de publication en ligne : 03/01/2023 En ligne : https://doi.org/10.1080/15481603.2022.2163574 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102496
in GIScience and remote sensing > vol 60 n° 1 (2023) . - n° 2163574[article]The cellular automata approach in dynamic modelling of land use change detection and future simulations based on remote sensing data in Lahore Pakistan / Muhammad Nasar Ahmad in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 1 (January 2023)
![]()
[article]
Titre : The cellular automata approach in dynamic modelling of land use change detection and future simulations based on remote sensing data in Lahore Pakistan Type de document : Article/Communication Auteurs : Muhammad Nasar Ahmad, Auteur ; Zhenfeng Shao, Auteur ; Akib Javed, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 47 - 55 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] automate cellulaire
[Termes IGN] carte thématique
[Termes IGN] classification semi-dirigée
[Termes IGN] détection de changement
[Termes IGN] données vectorielles
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] MNS SRTM
[Termes IGN] modèle dynamique
[Termes IGN] occupation du sol
[Termes IGN] Pakistan
[Termes IGN] surveillance de l'urbanisation
[Termes IGN] utilisation du solRésumé : (auteur) Rapid urbanization has become an immense problem in Lahore city, causing various socio-economic and environmental problems. Therefore, it is noteworthy to monitor land use/land cover (LULC) change detection and future LULC patterns in Lahore. The present study focuses on evaluating the current extent and modeling the future LULC developments in Lahore, Pakistan. Therefore, the semi-automatic classification model has been applied for the classification of Landsat satellite imagery from 2000 to 2020. And the Modules of Land Use Change Evaluation (MOLUSCE) cellular automata (CA-ANN) model was implemented to simulate future land use trends for the years 2030 and 2040. This study project made use of Landsat, Shuttle Radar Topography Mission Digital Elevation Model, and vector data. The research methodology includes three main steps: (i) semi-automatic land use classification using Landsat data from 2000 to 2020; (ii) future land use prediction using the CA-ANN (MOLUSCE) model; and (iii) monitoring change detection and interpretation of results. The research findings indicated that there was a rise in urban areas and a decline in vegetation, barren land, and water bodies for both the past and future projections. The results also revealed that about 27.41% of the urban area has been increased from 2000 to 2020 with a decrease of 42.13% in vegetation, 2.3% in barren land, and 6.51% in water bodies, respectively. The urban area is also expected to grow by 23.15% between 2020 and 2040, whereas vegetation, barren land, and water bodies will all decline by 28.05%, 1.8%, and 12.31%, respectively. Results can also aid in the long-term, sustainable planning of the city. It was also observed that the majority of the city's urban area expansion was found to have occurred in the city's eastern and southern regions. This research also suggests that decision-makers and municipal Government should reconsider city expansion strategies. Moreover, the future city master plans of 2050 must emphasize the relevance of rooftop urban planting and natural resource conservation. Numéro de notice : A2023-047 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : https://doi.org/10.14358/PERS.22-00102R2 Date de publication en ligne : 01/01/2023 En ligne : https://doi.org/10.14358/PERS.22-00102R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102357
in Photogrammetric Engineering & Remote Sensing, PERS > vol 89 n° 1 (January 2023) . - pp 47 - 55[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2023011 SL Revue Centre de documentation Revues en salle Disponible Integration of geospatial technologies with multiple regression model for urban land use land cover change analysis and its impact on land surface temperature in Jimma City, southwestern Ethiopia / Mitiku Badasa Moisa in Applied geomatics, vol 14 n° 4 (December 2022)
![]()
[article]
Titre : Integration of geospatial technologies with multiple regression model for urban land use land cover change analysis and its impact on land surface temperature in Jimma City, southwestern Ethiopia Type de document : Article/Communication Auteurs : Mitiku Badasa Moisa, Auteur ; Indale Niguse Dejene, Auteur ; Dessalegn Obsi Gemeda, Auteur Année de publication : 2022 Article en page(s) : pp 653 - 667 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] changement climatique
[Termes IGN] changement d'occupation du sol
[Termes IGN] climat urbain
[Termes IGN] espace vert
[Termes IGN] étalement urbain
[Termes IGN] Ethiopie
[Termes IGN] flore urbaine
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] modèle de régression
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] régression multiple
[Termes IGN] surface imperméable
[Termes IGN] urbanisation
[Termes IGN] utilisation du solRésumé : (auteur) Rapid urbanization and population growth are the main problems faced by developing countries that lead to natural resource depletion in the periphery of the city. This research attempts to analyze the impacts of urban land use land cover (LULC) change on land surface temperature (LST) from 1991 to 2021 in Jimma city, southwestern Ethiopia. Landsat Thematic Mapper (TM) 1991, Landsat Enhanced Thematic Mapper Plus (ETM +) 2005, and Landsat-8 Operational land imagery (OLI)/Thermal Infrared Sensor (TIRS) 2021 were used in this study. Multispectral bands and thermal infrared bands of Landsat images were used to calculate LULC change, normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), and LST. The LULC of the study area was classified using a supervised classification method with the maximum likelihood algorithm. The results of this study clearly showed that there is a negative correlation between vegetation cover and LST. The decrease in vegetation coverage and expansion of impervious surfaces lead to elevated LST in urban areas. The loss of vegetation cover contributed to the increasing trend of LST. Moreover, the conversion of vegetation cover to impervious surfaces aggravates the problem of LST. The results revealed that the built-up area was increased at a rate of 0.4 km2/year from 1991 to 2021. The vegetation cover in the city declined due to urban expansion to the periphery of the city. Consequently, the dense vegetation and sparse vegetation were converted into built-up areas by approximately 5.2 km2 during the study period. The mean LST of the study area increased by 10.3 °C from 1991 to 2021 during the winter season in daytime. To improve the problems of climate change around urban areas, all stakeholders should work together to increase the urban green space coverage, which will contribute a significant role in mitigating LST and the urban heat island effect. More specifically, all residents could be accessible to public green spaces around big cities. Numéro de notice : A2022-893 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1007/s12518-022-00463-x Date de publication en ligne : 22/08/2022 En ligne : https://doi.org/10.1007/s12518-022-00463-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102241
in Applied geomatics > vol 14 n° 4 (December 2022) . - pp 653 - 667[article]The simulation and prediction of land surface temperature based on SCP and CA-ANN models using remote sensing data: A case study of Lahore / Muhammad Nasar Ahmad in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 12 (December 2022)
![]()
[article]
Titre : The simulation and prediction of land surface temperature based on SCP and CA-ANN models using remote sensing data: A case study of Lahore Type de document : Article/Communication Auteurs : Muhammad Nasar Ahmad, Auteur ; Shao Zhengfeng, Auteur ; Andaleeb Yaseen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 783 - 790 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] changement climatique
[Termes IGN] changement d'utilisation du sol
[Termes IGN] classification par réseau neuronal
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] MNS SRTM
[Termes IGN] modèle de simulation
[Termes IGN] Pakistan
[Termes IGN] planification urbaine
[Termes IGN] température au solRésumé : (auteur) Over the last two decades, urban growth has become a major issue in Lahore, accelerating land surface temperature (LST) rise. The present study focused on estimating the current situation and simulating the future LST patterns in Lahore using remote sensing data and machine learning models. The semi-automated classification model was applied for the estimation of LST from 2000 to 2020. Then, the cellular automata-artificial neural networks (CA-ANN) module was implemented to predict future LST patterns for 2030 and 2040, respectively. Our research findings revealed that an average of 2.8 °C of land surface temperature has increased, with a mean LST value from 37.25 °C to 40.10 °C in Lahore during the last two decades from 2000 to 2020. Moreover, keeping CA-ANN simulations for land surface temperature, an increase of 2.2 °C is projected through 2040, and mean LST values will be increased from 40.1 °C to 42.31 °C by 2040. The CA-ANN model was validated for future LST simulation with an overall Kappa value of 0.82 and 86.2% of correctness for the years 2030 and 2040 using modules for land-use change evaluation. The study also indicates that land surface temperature is an important factor in environmental changes. Therefore, it is suggested that future urban planning should focus on urban rooftop plantations and vegetation conservation to minimize land surface temperature increases in Lahore. Numéro de notice : A2022-886 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.22-00071R2 Date de publication en ligne : 01/12/2022 En ligne : https://doi.org/10.14358/PERS.22-00071R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102208
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 12 (December 2022) . - pp 783 - 790[article]Urban wetland fragmentation and ecosystem service assessment using integrated machine learning algorithm and spatial landscape analysis / Das Subhasis in Geocarto international, vol 37 n° 25 ([01/12/2022])
PermalinkDriving factors of urban sprawl in the Romanian plain. Regional and temporal modelling using logistic regression / Ines Grigorescu in Geocarto international, vol 37 n° 24 ([20/10/2022])
PermalinkHistorical mapping of rice fields in Japan using phenology and temporally aggregated Landsat images in Google Earth Engine / Luis Carrasco in ISPRS Journal of photogrammetry and remote sensing, vol 191 (September 2022)
PermalinkA remote sensing assessment index for urban ecological livability and its application / Junbo Yu in Geo-spatial Information Science, vol 25 n° inconnu ([01/08/2022])
PermalinkSpatial–spectral attention network guided with change magnitude image for land cover change detection using remote sensing images / Zhiyong Lv in IEEE Transactions on geoscience and remote sensing, vol 60 n° 8 (August 2022)
PermalinkThe interrelationship between LST, NDVI, NDBI, and land cover change in a section of Lagos metropolis, Nigeria / Alfred S. Alademomi in Applied geomatics, vol 14 n° 2 (June 2022)
PermalinkFusion of optical, radar and waveform LiDAR observations for land cover classification / Huiran Jin in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)
PermalinkDetecting and mapping drought severity using multi-temporal Landsat data in the uMsinga region of KwaZulu-Natal, South Africa / Shenelle Lottering in Geocarto international, vol 37 n° 6 ([01/04/2022])
PermalinkSimulating future LUCC by coupling climate change and human effects based on multi-phase remote sensing data / Zihao Huang in Remote sensing, vol 14 n° 7 (April-1 2022)
PermalinkThe integration of multi-source remotely sensed data with hierarchically based classification approaches in support of the classification of wetlands / Aaron Judah in Canadian journal of remote sensing, vol 48 n° 2 (April 2022)
Permalink