Descripteur
Termes descripteurs IGN > imagerie > image spatiale > image satellite > image Landsat > image Landsat-TM
image Landsat-TM |



Etendre la recherche sur niveau(x) vers le bas
Assessing spatial-temporal evolution processes and driving forces of karst rocky desertification / Fei Chen in Geocarto international, vol 36 n° 3 ([15/02/2021])
![]()
[article]
Titre : Assessing spatial-temporal evolution processes and driving forces of karst rocky desertification Type de document : Article/Communication Auteurs : Fei Chen, Auteur ; Shijie Wang, Auteur ; Xiaoyong Bai, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 262 - 280 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] carte d'utilisation du sol
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] classification et arbre de régression
[Termes descripteurs IGN] désertification
[Termes descripteurs IGN] données spatiotemporelles
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image Landsat-TM
[Termes descripteurs IGN] karst
[Termes descripteurs IGN] lithologieRésumé : (auteur) Karst Rocky Desertification (KRD) has become the most serious ecological disaster in Southwest China. We used the data of Thematic Mapper (TM) images from 1990, 1995, 2000, 2004, and 2011 and the 2016 Operational Land Imager (OLI) image. These sensing images were pre-processed by removing non-karst areas based on lithology and cutting away the land types impossibly generating KRD from land use maps. Then, we used a Classification And Regression Tree (CART) to classify the KRD. We want to improve the interpretation accuracy of KRD through the above steps. The results were as follows: (1) The KRD experiences the evolution process of ‘first deterioration and then improvement’. The rate is −4.94 km2.a−1 over a period of 1990 to 2004, and the rate is 36.48 km2.a−1 from 2004 to 2016; (2) The most influential factors causing KRD formation are the lithology and the resident population density, with contribution rates of 30.17% and 25.86%, respectively. Numéro de notice : A2021-140 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1595175 date de publication en ligne : 18/07/2019 En ligne : https://doi.org/10.1080/10106049.2019.1595175 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97036
in Geocarto international > vol 36 n° 3 [15/02/2021] . - pp 262 - 280[article]Applying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh / Mohammad Emran Hasan in Forests, vol 11 n° 9 (September 2020)
![]()
[article]
Titre : Applying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh Type de document : Article/Communication Auteurs : Mohammad Emran Hasan, Auteur ; Biswajit Nath, Auteur ; A.H.M. Raihan Sarker, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : N° 1016 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] automate cellulaire
[Termes descripteurs IGN] Bangladesh
[Termes descripteurs IGN] classification par maximum de vraisemblance
[Termes descripteurs IGN] couvert forestier
[Termes descripteurs IGN] déboisement
[Termes descripteurs IGN] dégradation de l'environnement
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] gestion forestière durable
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image Landsat-TM
[Termes descripteurs IGN] mangrove
[Termes descripteurs IGN] modèle de Markov
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] réserve forestière
[Termes descripteurs IGN] réserve naturelle
[Termes descripteurs IGN] santé des forêts
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] système d'information géographiqueRésumé : (auteur) Overdependence on and exploitation of forest resources have significantly transformed the natural reserve forest of Sundarban, which shares the largest mangrove territory in the world, into a great degradation status. By observing these, a most pressing concern is how much degradation occurred in the past, and what will be the scenarios in the future if they continue? To confirm the degradation status in the past decades and reveal the future trend, we took Sundarban Reserve Forest (SRF) as an example, and used satellite Earth observation historical Landsat imagery between 1989 and 2019 as existing data and primary data. Moreover, a geographic information system model was considered to estimate land cover (LC) change and spatial health quality of the SRF from 1989 to 2029 based on the large and small tree categories. The maximum likelihood classifier (MLC) technique was employed to classify the historical images with five different LC types, which were further considered for future projection (2029) including trends based on 2019 simulation results from 1989 and 2019 LC maps using the Markov-cellular automata model. The overall accuracy achieved was 82.30%~90.49% with a kappa value of 0.75~0.87. The historical result showed forest degradation in the past (1989–2019) of 4773.02 ha yr−1, considered as great forest degradation (GFD) and showed a declining status when moving with the projection (2019–2029) of 1508.53 ha yr−1 and overall there was a decline of 3956.90 ha yr−1 in the 1989–2029 time period. Moreover, the study also observed that dense forest was gradually degraded (good to bad) but, conversely, light forest was enhanced, which will continue in the future even to 2029 if no effective management is carried out. Therefore, by observing the GFD, through spatial forest health quality and forest degradation mapping and assessment, the study suggests a few policies that require the immediate attention of forest policy-makers to implement them immediately and ensure sustainable development in the SRF. Numéro de notice : A2020-752 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f11091016 date de publication en ligne : 21/09/2020 En ligne : https://doi.org/10.3390/f11091016 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96432
in Forests > vol 11 n° 9 (September 2020) . - N° 1016[article]Spectral–spatial–temporal MAP-based sub-pixel mapping for land-cover change detection / Da He in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
![]()
[article]
Titre : Spectral–spatial–temporal MAP-based sub-pixel mapping for land-cover change detection Type de document : Article/Communication Auteurs : Da He, Auteur ; Yanfei Zhong, Auteur ; Liangpei Zhang, Auteur Année de publication : 2020 Article en page(s) : pp 1696 - 1717 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] changement d'occupation du sol
[Termes descripteurs IGN] classification du maximum a posteriori
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] données spatiotemporelles
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image Landsat-TM
[Termes descripteurs IGN] image MODIS
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image Quickbird
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] optimisation spatiale
[Termes descripteurs IGN] précision infrapixellaire
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] urbanisation
[Termes descripteurs IGN] Wuhan (Chine)
[Termes descripteurs IGN] zone urbaineRésumé : (Auteur) The maximum a posteriori (MAP) estimation model-based sub-pixel mapping (SPM) method is an alternative way to solve the ill-posed SPM problem. The MAP estimation model has been proven to be an effective SPM approach and has been extensively developed over the past few years, as a result of its effective regularization capability that comes from the spatial regularization model. However, various spatial regularization models do not always truly reflect the detailed spatial distribution in a real situation, and the over-smoothing effect of the spatial regularization model always tends to efface the detailed structural information. In this article, under the scenario of time-series observation by remote sensing imagery, the joint spectral–spatial–temporal MAP-based (SST_MAP) model for SPM is proposed. In SST_MAP, a newly developed temporal regularization model is added to the MAP model, based on the prerequisite for a temporally close fine image covering the same study region. This available fine image can provide the specific spatial structures most closely conforming to the ground truth for a more precise constraint, thereby reducing the over-smoothing effect. Furthermore, the three dimensions are mutually balanced and mutually constrained, to reach an equilibrium point and achieve restoration of both smooth areas for the homogeneous land-cover classes and a detailed structure for the heterogeneous land-cover classes. Four experiments were designed to validate the proposed SST_MAP: three synthetic-image experiments and one real-image experiment. The restoration results confirm the superiority of the proposed SST_MAP model. Notably, under the background of time-series observation, SST_MAP provides an alternative way of land-cover change detection (LCCD), achieving both detailed spatial-scale and high-frequency temporal LCCD observation for the study case of urbanization analysis within the city of Wuhan in China. Numéro de notice : A2020-088 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2947708 date de publication en ligne : 18/12/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2947708 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94662
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1696 - 1717[article]Exploring the synergy between Landsat and ASAR towards improving thematic mapping accuracy of optical EO data / Alexander Cass in Applied geomatics, vol 11 n° 3 (September 2019)
![]()
[article]
Titre : Exploring the synergy between Landsat and ASAR towards improving thematic mapping accuracy of optical EO data Type de document : Article/Communication Auteurs : Alexander Cass, Auteur ; George P. Petropoulos, Auteur ; Konstantinos P. Ferentinos, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 277 - 288 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] cartographie thématique
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] image Envisat-ASAR
[Termes descripteurs IGN] image Landsat-TM
[Termes descripteurs IGN] image optique
[Termes descripteurs IGN] image radar
[Termes descripteurs IGN] Pays de Galles
[Termes descripteurs IGN] surface cultivéeRésumé : (Auteur) Earth Observation (EO) provides a unique means of obtaining information on land use/cover and of its changes, which is of key importance in many scientific and practical applications. EO data is already widely used, for example, in environmental practices or decision-making related to food availability and security. As such, it is imperative to examine the suitability of different EO datasets, including their synergies, in respect to their ability to create products and tools for such practices and to guide effectively such decisions. This work aims at exploring the added value of the synergistic use of optical and radar data (from the Landsat TM and Advanced Synthetic Aperture Radar (ASAR) sensors respectively). Such information can help towards improving the accuracy of land cover classifications from EO datasets. As a case study, the region of Wales in the UK has been used. Two classifications—one based on optical data alone and another one developed from the synergy of optical and RADAR datasets acquired nearly, concurrently were developed for the studied region. Evaluation of the derived land/use cover maps was performed on the basis of the confusion matrix using validation points derived from a Phase 1 habitat map of Wales. The results showed 15% increase in overall accuracy (84% from 69%) and kappa coefficient (0.81 from 0.65) using the synergistic approach over the scenario where only optical data were used in the classification. In addition, McNemar’s test was used to assess the statistical significance of the obtained results. Results of this test provided further confirmed that the use of optical data synergistically with the radar data provides more accurate land use/cover maps in comparison with the use of optical data alone. Numéro de notice : A2019-461 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s12518-019-00258-7 date de publication en ligne : 13/04/2019 En ligne : https://doi.org/10.1007/s12518-019-00258-7 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93601
in Applied geomatics > vol 11 n° 3 (September 2019) . - pp 277 - 288[article]Implementing Moran eigenvector spatial filtering for massively large georeferenced datasets / Daniel A. Griffith in International journal of geographical information science IJGIS, vol 33 n° 9 (September 2019)
![]()
[article]
Titre : Implementing Moran eigenvector spatial filtering for massively large georeferenced datasets Type de document : Article/Communication Auteurs : Daniel A. Griffith, Auteur ; Yongwan Chun, Auteur Année de publication : 2019 Article en page(s) : pp 1703 - 1717 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] approximation
[Termes descripteurs IGN] autocorrélation spatiale
[Termes descripteurs IGN] filtrage numérique d'image
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image Landsat-TM
[Termes descripteurs IGN] régression linéaire
[Termes descripteurs IGN] segmentation d'image
[Termes descripteurs IGN] tessellation
[Termes descripteurs IGN] vecteur propreMots-clés libres : Moran eigenvector spatial filtering Résumé : (auteur) Moran eigenvector spatial filtering (MESF) furnishes an alternative method to account for spatial autocorrelation in linear regression specifications describing georeferenced data, although spatial auto-models also are widely used. The utility of this MESF methodology is even more impressive for the non-Gaussian models because its flexible structure enables it to be easily applied to generalized linear models, which include Poisson, binomial, and negative binomial regression. However, the implementation of MESF can be computationally challenging, especially when the number of geographic units, n, is large, or massive, such as with a remotely sensed image. This intensive computation aspect has been a drawback to the use of MESF, particularly for analyzing a remotely sensed image, which can easily contain millions of pixels. Motivated by Curry, this paper proposes an approximation approach to constructing eigenvector spatial filters (ESFs) for a large spatial tessellation. This approximation is based on a divide-and-conquer approach. That is, it constructs ESFs separately for each sub-region, and then combines the resulting ESFs across an entire remotely sensed image. This paper, employing selected specimen remotely sensed images, demonstrates that the proposed technique provides a computationally efficient and successful approach to implement MESF for large or massive spatial tessellations. Numéro de notice : A2019-388 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.1080/13658816.2019.1593421 date de publication en ligne : 02/04/2019 En ligne : https://doi.org/10.1080/13658816.2019.1593421 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93479
in International journal of geographical information science IJGIS > vol 33 n° 9 (September 2019) . - pp 1703 - 1717[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 079-2019092 RAB Revue Centre de documentation En réserve 3L Disponible 079-2019091 SL Revue Centre de documentation Revues en salle Disponible Object-based random forest modelling of aboveground forest biomass outperforms a pixel-based approach in a heterogeneous and mountain tropical environment / Eduarda M.O. Silveira in International journal of applied Earth observation and geoinformation, vol 78 (June 2019)
PermalinkExamining the sensitivity of spatial scale in cellular automata Markov chain simulation of land use change / Hao Wu in International journal of geographical information science IJGIS, Vol 33 n° 5-6 (May - June 2019)
PermalinkTree cover mapping using hybrid fuzzy C-means method and multispectral satellite images / Linda Gulbe in Baltic forestry, vol 25 n° 1 (2019)
PermalinkIntra-annual phenology for detecting understory plant invasion in urban forests / Kunwar K. Singh in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
PermalinkExploring image fusion of ALOS/PALSAR data and LANDSAT data to differentiate forest area / Saygin Abdikan in Geocarto international, vol 33 n° 1 (January 2018)
PermalinkUn inventaire forestier multisource pour la gestion des territoires / Dinesh Babu Irulappa Pillai Vijayakumar (2018)
PermalinkExtraction du bâti sur le territoire de la wilaya de Blida (Algérie) / Siham Bougdour in Géomatique expert, n° 119 (novembre - décembre 2017)
PermalinkUncertainties in tree cover maps of Sub-Saharan Africa and their implications for measuring progress towards CBD Aichi Targets / Dorit Gross in Remote sensing in ecology and conservation, vol inconnu ([01/11/2017])
![]()
PermalinkReconstruction of time-varying tidal flat topography using optical remote sensing imageries / Kuo-Hsin Tseng in ISPRS Journal of photogrammetry and remote sensing, vol 131 (September 2017)
PermalinkSpatiotemporal analyses of urban vegetation structural attributes using multitemporal Landsat TM data and field measurements / Zhibin Ren in Annals of Forest Science [en ligne], vol 74 n° 3 (September 2017)
PermalinkChange detection in forests and savannas using statistical analysis based on geographical objects / Lucilia Rezende Leite in Boletim de Ciências Geodésicas, vol 23 n° 2 (abr - jun 2017)
PermalinkTM-Based SOC models augmented by auxiliary data for carbon crediting programs in semi-arid environments / Salahuddin M. Jaber in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 6 (June 2017)
PermalinkEvaluation of multisource data for glacier terrain mapping : a neural net approach / Aparna Shukla in Geocarto international, vol 32 n° 5 (May 2017)
PermalinkTélédétection et photogrammétrie pour l'étude de la dynamique de l’occupation du sol dans le bassin versant de l’oued Chiba (Cap-Bon, Tunisie) / Anis Gasmi in Revue Française de Photogrammétrie et de Télédétection, n° 215 (mai - août 2017)
PermalinkMonitoring of water stress in wheat using multispectral indices derived from Landsat-TM / Nitika Dangwal in Geocarto international, vol 31 n° 5 - 6 (May - June 2016)
PermalinkForest above ground biomass inversion by fusing GLAS with optical remote sensing data / Xiaohuan Xi in ISPRS International journal of geo-information, vol 5 n° 4 (April 2016)
PermalinkComparison of three Landsat TM compositing methods: A case study using modeled tree canopy cover / Bonnie Ruefenacht in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 3 (March 2016)
PermalinkLand cover changes assessment using object-based image analysis in the Binah River watershed (Togo and Benin) / Hèou Maléki Badjana in Earth and space science, vol 2 n° 10 (October 2015)
PermalinkAn adaptive semisupervised approach to the detection of user-defined recurrent changes in image time series / Daniel Zanotta in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)
PermalinkSpatial analysis of high-resolution urban thermal patterns in Vojvodina, Serbia / Dusan Jovanovic in Geocarto international, vol 30 n° 5 - 6 (May - July 2015)
PermalinkEvaluating leaf chlorophyll content prediction from multispectral remote sensing data within a physically-based modelling framework / H. Croft in ISPRS Journal of photogrammetry and remote sensing, vol 102 (April 2015)
PermalinkImproving the spatial resolution of landsat TM/ETM+ through fusion with SPOT5 images via learning-based super-resolution / Huihui Song in IEEE Transactions on geoscience and remote sensing, vol 53 n° 3 (March 2015)
PermalinkAn analysis of urban expansion and its associated thermal characteristics using Landsat imagery / Wei Huang in Geocarto international, vol 30 n° 1 - 2 (January - February 2015)
PermalinkComparison of methods toward multi-scale forest carbon mapping and spatial uncertainty analysis: combining national forest inventory plot data and landsat TM images / Andrew L. Fleming in European Journal of Forest Research, vol 134 n° 1 (January 2015)
PermalinkTraitement de données Thematic Mapper pour la cartographie multi temporelle du plateau sous-marin autour des îles Kerkennah (Tunisie) / Rim Katlane in Photo interpretation, European journal of applied remote sensing, vol 50 n° 3 - 4 (septembre 2014)
PermalinkCoastal and marine ecological changes and fish cage culture development in Phu Quoc, Vietnam (2001 to 2011) / Diep Thi Hong Nguyen in Geocarto international, vol 29 n° 5 - 6 (August - October 2014)
PermalinkImproved capability in stone pine forest mapping and management in Lebanon using hyperspectral CHTIS-Proba data relative to Landsat ETM+ / Mohamad Awad in Photogrammetric Engineering & Remote Sensing, PERS, vol 80 n° 8 (August 2014)
PermalinkGlacier changes using satellite data and effect of climate in Tirungkhad basin located in western Himalaya / Riyaz Ahmad Mir in Geocarto international, vol 29 n° 3 - 4 (June - July 2014)
PermalinkAn extended approach for biomass estimation in a mixed vegetation area using ASAR and TM data / Minfeng Xing in Photogrammetric Engineering & Remote Sensing, PERS, vol 80 n° 5 (May 2014)
PermalinkAutomated geometric correction of multispectral images from high resolution CCD Camera (HRCC) on-board CBERS-2 and CBERS-2B / Chabitha Devarj in ISPRS Journal of photogrammetry and remote sensing, vol 89 (March 2014)
PermalinkEffects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation / Matthew Maimaitiyiming in ISPRS Journal of photogrammetry and remote sensing, vol 89 (March 2014)
PermalinkObservation à l'aide des images satellitaires Landsat TM multidates des impacts du transfert de la gestion forestière aux communautés de base : cas de la commune de Didy, région d'Alaotra-Mangoro, Madagascar / Solofoaisoa Rakotoniaina in Photo interpretation, European journal of applied remote sensing, vol 50 n° 1 (mars 2014)
PermalinkHierarchical extraction of landslides from multiresolution remotely sensed optical images / Camille Kurtz in ISPRS Journal of photogrammetry and remote sensing, vol 87 (January 2014)
PermalinkRestoration of information obscured by mountainous shadows through Landsat TM/ETM+ images without the use of DEM data : A new method / Yuan Zhou in IEEE Transactions on geoscience and remote sensing, vol 52 n° 1 tome 1 (January 2014)
PermalinkLandscape metrics for analysing urbanization-induced land use and land cover changes / Hua Liu in Geocarto international, vol 28 n° 7-8 (November - December 2013)
PermalinkMapping and assessing of urban impervious areas using multiple endmember spectral mixture analysis: a case study in the city of Tampa, Florida / Fenqing Weng in Geocarto international, vol 28 n° 7-8 (November - December 2013)
PermalinkMarkov land cover change modeling using pairs of time-series satellite images / Priyakant Sinha in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 11 (November 2013)
PermalinkParcel-level identification of crop types using different classification algorithms and multi-resolution imagery in southeastern Turkey / Ugur Alganci in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 11 (November 2013)
PermalinkA semi-ellipsoid-model based fuzzy classifier to map grassland in Inner Mongolia, China / Hai Lan in ISPRS Journal of photogrammetry and remote sensing, vol 85 (November 2013)
PermalinkA spectral gradient difference based approach for land cover change detection / Jun Chen in ISPRS Journal of photogrammetry and remote sensing, vol 85 (November 2013)
PermalinkApport de la télédétection à l'analyse de la dynamique de l'occupation du sol à partir d'une utilisation couplée d'un modèle de markov et d'un automate celllairecas du département de Sintra (Centre-Ouest de la Cote d'Ivoire). / Vami Hermann N'guessan Bi in Revue Française de Photogrammétrie et de Télédétection, n° 204 (Octobre 2013)
PermalinkAnalysing spatio-temporal footprints of urbanization on environment of Surat city using satellite-derived bio-physical parameters / Richa Sharma in Geocarto international, vol 28 n° 5-6 (August - October 2013)
PermalinkModelling the impacts of civil war on land use and land cover change within Kono District, Sierra Leone: a socio-geospatial approach / Sigismond A. Wilson in Geocarto international, vol 28 n° 5-6 (August - October 2013)
PermalinkContribution des données ALOS et Landsat dans la cartographie et l'analyse des linéaments dans le Sahel central (Maroc occidental) / Adnane Habib in Revue Française de Photogrammétrie et de Télédétection, n° 203 (Juillet 2013)
PermalinkEffects of national forest inventory plot location error on forest carbon stock estimation using k-nearest neighbor algorithm / Jaehoon Jung in ISPRS Journal of photogrammetry and remote sensing, vol 81 (July 2013)
Permalink