Descripteur
Termes IGN > imagerie > image numérique > pixel
pixelVoir aussi |
Documents disponibles dans cette catégorie (231)



Etendre la recherche sur niveau(x) vers le bas
True orthophoto generation based on unmanned aerial vehicle images using reconstructed edge points / Mojdeh Ebrahimikia in Photogrammetric record, vol 37 n° 178 (June 2022)
![]()
[article]
Titre : True orthophoto generation based on unmanned aerial vehicle images using reconstructed edge points Type de document : Article/Communication Auteurs : Mojdeh Ebrahimikia, Auteur ; Ali Hosseininaveh, Auteur Année de publication : 2022 Article en page(s) : pp 161 - 184 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] détection de contours
[Termes IGN] détection du bâti
[Termes IGN] distorsion d'image
[Termes IGN] graphe
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface
[Termes IGN] orthophotographie
[Termes IGN] orthophotoplan numérique
[Termes IGN] photogrammétrie aérienne
[Termes IGN] pixel de contour
[Termes IGN] structure-from-motion
[Termes IGN] zone urbaineRésumé : (auteur) After considering state-of-the-art algorithms, this paper presents a novel method for generating true orthophotos from unmanned aerial vehicle (UAV) images of urban areas. The procedure consists of four steps: 2D edge detection in building regions, 3D edge graph generation, digital surface model (DSM) modification and, finally, true orthophoto and orthomosaic generation. The main contribution of this paper is concerned with the first two steps, in which deep-learning approaches are used to identify the structural edges of the buildings and the estimated 3D edge points are added to the point cloud for DSM modification. Running the proposed method as well as four state-of-the-art methods on two different datasets demonstrates that the proposed method outperforms the existing orthophoto improvement methods by up to 50% in the first dataset and by 70% in the second dataset by reducing true orthophoto distortion in the structured edges of the buildings. Numéro de notice : A2022-517 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12409 Date de publication en ligne : 05/04/2022 En ligne : https://doi.org/10.1111/phor.12409 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101065
in Photogrammetric record > vol 37 n° 178 (June 2022) . - pp 161 - 184[article]Effective CBIR based on hybrid image features and multilevel approach / D. Latha in Multimedia tools and applications, vol inconnu (March 2022)
![]()
[article]
Titre : Effective CBIR based on hybrid image features and multilevel approach Type de document : Article/Communication Auteurs : D. Latha, Auteur ; A. Geetha, Auteur Année de publication : 2022 Article en page(s) : pp Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] base de données d'images
[Termes IGN] écart type
[Termes IGN] espace colorimétrique
[Termes IGN] image en couleur
[Termes IGN] image RVB
[Termes IGN] matrice de co-occurrence
[Termes IGN] motif binaire local
[Termes IGN] niveau de gris (image)
[Termes IGN] observation multiniveaux
[Termes IGN] recherche d'image basée sur le contenu
[Termes IGN] saturation de la couleur
[Termes IGN] texture d'image
[Termes IGN] transformation intensité-teinte-saturationRésumé : (auteur) Content based image retrieval (CBIR) process can retrieve images by matching its feature set values. The proposed novel CBIR methodology called Effective CBIR based on hybrid image features and multilevel approach (CBIR_LTP_GLCM) integrates the hybrid features such as color features and texture features, along with multilevel approach. The color features such as mean and standard deviation are adopted in the proposed method to represent the global color properties of an image. This method manipulates the color input-image by processing the Hue, Saturation and Value channels of the HSV color space. This novel work is enriched with the image feature derived from Local Ternary Pattern (LTP) in addition with GLCM. So, the proposed method CBIR_LTP_GLCM is potentially charged with meaningful modifications travelling with color image manipulation and extended image retrieval accuracy with the aid of multilevel approach. The proposed methodology is experimentally compared with the existing recent CBIR versions by using the standard database such as Corel-1 k, and a user contributed database named DB_VEG. Numéro de notice : A2022-291 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11042-022-12588-7 Date de publication en ligne : 30/03/2022 En ligne : https://doi.org/10.1007/s11042-022-12588-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100337
in Multimedia tools and applications > vol inconnu (March 2022) . - pp[article]Learning multi-view aggregation in the wild for large-scale 3D semantic segmentation / Damien Robert (2022)
![]()
Titre : Learning multi-view aggregation in the wild for large-scale 3D semantic segmentation Type de document : Article/Communication Auteurs : Damien Robert, Auteur ; Bruno Vallet , Auteur ; Loïc Landrieu
, Auteur
Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Année de publication : 2022 Conférence : CVPR 2022 19/06/2022 24/06/2022 New Orleans Louisiane - Etats-Unis Importance : 17 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] chaîne de traitement
[Termes IGN] données localisées 2D
[Termes IGN] données localisées 3D
[Termes IGN] données massives
[Termes IGN] pixel
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (auteur) Recent works on 3D semantic segmentation propose to exploit the synergy between images and point clouds by processing each modality with a dedicated network and projecting learned 2D features onto 3D points. Merging large-scale point clouds and images raises several challenges, such as constructing a mapping between points and pixels, and aggregating features between multiple views. Current methods require mesh reconstruction or specialized sensors to recover occlusions, and use heuristics to select and aggregate available images. In contrast, we propose an end-to-end trainable multi-view aggregation model leveraging the viewing conditions of 3D points to merge features from images taken at arbitrary positions. Our method can combine standard 2D and 3D networks and outperforms both 3D models operating on colorized point clouds and hybrid 2D/3D networks without requiring colorization, meshing, or true depth maps. We set a new state-of-the-art for large-scale indoor/ outdoor semantic segmentation on S3DIS (74.7 mIoU 6-Fold) and on KITTI360 (58.3 mIoU). Our full pipeline is accessible at https: //github.com/drprojects/DeepViewAgg, and only requires raw 3D scans and a set of images and poses. Numéro de notice : C2022-006 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Preprint nature-HAL : Préprint DOI : sans Date de publication en ligne : 15/04/2022 En ligne : https://doi.org/10.48550/arXiv.2204.07548 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100490 Semi-automatic extraction of rural roads under the constraint of combined geometric and texture features / Hai Tan in ISPRS International journal of geo-information, vol 10 n° 11 (November 2021)
![]()
[article]
Titre : Semi-automatic extraction of rural roads under the constraint of combined geometric and texture features Type de document : Article/Communication Auteurs : Hai Tan, Auteur ; Zimo Shen, Auteur ; Jiguang Dai, Auteur Année de publication : 2021 Article en page(s) : pp 754 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] chemin rural
[Termes IGN] Chine
[Termes IGN] coefficient de corrélation
[Termes IGN] contrainte géométrique
[Termes IGN] corrélation croisée normalisée
[Termes IGN] courbure
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction semi-automatique
[Termes IGN] image à haute résolution
[Termes IGN] modèle de simulation
[Termes IGN] niveau de gris (image)
[Termes IGN] route
[Termes IGN] texture d'imageRésumé : (auteur) The extraction of road information from high-resolution remotely-sensed images has important application value in many fields. Rural roads have the characteristics of relatively narrow widths and diversified pavement materials; these characteristics can easily lead to problems involving the similarity of the road texture with the texture of surrounding objects and make it difficult to improve the automation of traditional high-precision road extraction methods. Based on this background, a semi-automatic rural road extraction method constrained by a combination of geometric and texture features is proposed in this paper. First, an adaptive road width extraction model is proposed to improve the accuracy of the initial road centre point. Then, aiming at the continuous change of curvature of rural roads, a tracking direction prediction model is proposed. Finally, a matching model under geometric texture constraints is proposed, which solves the problem of similarity between road and neighbourhood texture to a certain extent. The experimental results show that by selecting different types of experimental scenes or remotely sensed image data, compared with other methods, the proposed method can not only guarantee the road extraction accuracy but also improve the degree of automation to a certain extent. Numéro de notice : A2021-850 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10110754 Date de publication en ligne : 09/11/2021 En ligne : https://doi.org/10.3390/ijgi10110754 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99009
in ISPRS International journal of geo-information > vol 10 n° 11 (November 2021) . - pp 754[article]Remote sensing image colorization using symmetrical multi-scale DCGAN in YUV color space / Min Wu in The Visual Computer, vol 37 n° 7 (July 2021)
![]()
[article]
Titre : Remote sensing image colorization using symmetrical multi-scale DCGAN in YUV color space Type de document : Article/Communication Auteurs : Min Wu, Auteur ; Xin Jin, Auteur ; Qian Jiang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1707 - 1729 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] contraste de couleurs
[Termes IGN] données multiéchelles
[Termes IGN] image en couleur
[Termes IGN] image RVB
[Termes IGN] niveau de gris (image)
[Termes IGN] réseau antagoniste génératifRésumé : (auteur) Image colorization technique is used to colorize the gray-level image or single-channel image, which is a very significant and challenging task in image processing, especially the colorization of remote sensing images. This paper proposes a new method for coloring remote sensing images based on deep convolution generation adversarial network. The adopted generator model is a symmetrical structure using the principle of auto-encoder, and a multi-scale convolutional module is specially designed to introduce into the generator model. Thus, the proposed generator can enable the whole model to retain more image features in the process of up-sampling and down-sampling. Meanwhile, the discriminator uses residual neural network 18 that can compete with the generator, so that the generator and discriminator can effectively optimize each other. In the proposed method, the color space transformation technique is first utilized to convert remote sensing images from RGB to YUV. Then, the Y channel (a gray-level image) is used as the input of the neural network model to predict UV channels. Finally, the predicted UV channels are concatenated with the original Y channel as a whole YUV that is then transformed into RGB space to get the final color image. Experiments are conducted to test the performance of different image colorization methods, and the results show that the proposed method has good performance in both visual quality and objective indexes on the colorization of remote sensing image. Numéro de notice : A2021-540 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-020-01933-2 Date de publication en ligne : 28/08/2020 En ligne : https://doi.org/10.1007/s00371-020-01933-2 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98018
in The Visual Computer > vol 37 n° 7 (July 2021) . - pp 1707 - 1729[article]Extraction of sea ice cover by Sentinel-1 SAR based on support vector machine with unsupervised generation of training data / Xiao-Ming Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
PermalinkExtraction of built-up areas from Landsat-8 OLI data based on spectral-textural information and feature selection using support vector machine method / Vijendra Singh Bramhe in Geocarto international, vol 35 n° 10 ([01/08/2020])
PermalinkA water identification method basing on grayscale Landsat 8 OLI images / Zhitian Deng in Geocarto international, vol 35 n° 7 ([15/05/2020])
PermalinkA point cloud feature regularization method by fusing judge criterion of field force / Xijiang Chen in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
PermalinkExtracting impervious surfaces from full polarimetric SAR images in different urban areas / Sara Attarchi in International Journal of Remote Sensing IJRS, vol 41 n° 12 (20 - 30 March 2020)
PermalinkSystème de traitement d’images temps réel dédié à la mesure de champs denses de déplacements et de déformations / Seyfeddine Boukhtache (2020)
PermalinkRobust multisource remote sensing image registration method based on scene shape similarity / Ming Hao in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 10 (October 2019)
PermalinkIndividual tree crown segmentation in tropical peat swamp forest using airborne hyperspectral data / Sitinor Atikah Nordin in Geocarto international, vol 34 n° 11 ([15/08/2019])
PermalinkUne nouvelle méthode de vectorisation du cadastre ancien / Antony Chalais in Géomatique expert, n° 129 (août - septembre 2019)
PermalinkSmart cartographic background symbolization for map mashups in geoportals : A proof of concept by example of landuse representation / Nadia H. Panchaud in Cartographic journal (the), Vol 56 n° 1 (February 2019)
Permalink