Descripteur
Termes descripteurs IGN > imagerie > image spatiale > image satellite > image Pléiades
image PléiadesVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
Matching of TerraSAR-X derived ground control points to optical image patches using deep learning / Tatjana Bürgmann in ISPRS Journal of photogrammetry and remote sensing, Vol 158 (December 2019)
![]()
[article]
Titre : Matching of TerraSAR-X derived ground control points to optical image patches using deep learning Type de document : Article/Communication Auteurs : Tatjana Bürgmann, Auteur ; Wolfgang Koppe, Auteur ; Michael Schmitt, Auteur Année de publication : 2019 Article en page(s) : pp 241 - 248 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] appariement d'images
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] géolocalisation
[Termes descripteurs IGN] image multicapteur
[Termes descripteurs IGN] image optique
[Termes descripteurs IGN] image Pléiades
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] image TerraSAR-X
[Termes descripteurs IGN] point d'appuiRésumé : (auteur) High resolution synthetic aperture radar (SAR) satellites like TerraSAR-X are capable of acquiring images exhibiting an absolute geolocation accuracy within a few centimeters, mainly because of the availability of precise orbit information and by compensating range delay errors due to atmospheric conditions. In contrast, satellite images from optical missions generally exhibit comparably low geolocation accuracies because of the propagation of errors in angular measurements over large distances. However, a variety of remote sensing applications, such as change detection, surface movement monitoring or ice flow measurements, require precisely geo-referenced and co-registered satellite images. By using Ground Control Points (GCPs) derived from TerraSAR-X, the absolute geolocation accuracy of optical satellite images can be improved. For this purpose, the corresponding matching points in the optical images need to be localized. In this paper, a deep learning based approach is investigated for an automated matching of SAR-derived GCPs to optical image elements. Therefore, a convolutional neural network is pretrained with medium resolution Sentinel-1 and Sentinel-2 imagery and fine-tuned on precisely co-registered TerraSAR-X and Pléiades training image pairs to learn a common descriptor representation. By using these descriptors, the similarity of SAR and optical image patches can be calculated. This similarity metric is then used in a sliding window approach to identify the matching points in the optical reference image. Subsequently, the derived points can be utilized for co-registration of the underlying images. The network is evaluated over nine study areas showing airports and their rural surroundings from several different countries around the world. The results show that based on TerraSAR-X-derived GCPs, corresponding points in the optical image can automatically and reliably be identified with a pixel-level localization accuracy. Numéro de notice : A2019-548 Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.09.010 date de publication en ligne : 05/11/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.09.010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94194
in ISPRS Journal of photogrammetry and remote sensing > Vol 158 (December 2019) . - pp 241 - 248[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-2019121 SL Revue Centre de documentation Revues en salle Disponible Combining low-density LiDAR and satellite images to discriminate species in mixed Mediterranean forest / Angela Blázquez-Casado in Annals of Forest Science [en ligne], vol 76 n° 2 (June 2019)
![]()
[article]
Titre : Combining low-density LiDAR and satellite images to discriminate species in mixed Mediterranean forest Type de document : Article/Communication Auteurs : Angela Blázquez-Casado, Auteur ; Rafael Calama, Auteur ; Manuel Valbuena, Auteur ; Marta Vergarechea, Auteur ; Francisco Rodriguez, Auteur Année de publication : 2019 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes descripteurs IGN] analyse discriminante
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] forêt méditerranéenne
[Termes descripteurs IGN] houppier
[Termes descripteurs IGN] image Pléiades-HR
[Termes descripteurs IGN] Pinus pinaster
[Termes descripteurs IGN] Pinus pineaRésumé : (Auteur) Context : The discrimination of tree species at individual level in mixed Mediterranean forest based on remote sensing is a field which has gained greater importance. In these stands, the capacity to predict the quality and quantity of non-wood forest products is particularly important due to the very different goods the two species produce.
Aims : To assess the potential of using low-density airborne LiDAR data combined with high-resolution Pleiades images to discriminate two different pine species in mixed Mediterranean forest (Pinus pinea L. and Pinus pinaster Ait.) at individual tree level.
Methods : A Random Forest model was trained using plots from the pure stand dataset, determining which LiDAR and satellite variables allow us to obtain better discrimination between groups. The model constructed was then validated by classifying individuals in an independent set of pure and mixed stands.
Results : The model combining LiDAR and Pleiades data provided greater accuracy (83.3% and 63% in pure and mixed validation stands, respectively) than the models which only use one type of covariables.
Conclusion : The automatic crown delineation tool developed allows two very similar species in mixed Mediterranean conifer forest to be discriminated using continuous spatial information at the surface: Pleiades images and open source LiDAR data. This approach is easily applicable over large areas, enhancing the economic value of non-wood forest products and aiding forest managers to accurately predict production.Numéro de notice : A2019-180 Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-019-0835-x date de publication en ligne : 17/05/2019 En ligne : https://doi.org/10.1007/s13595-019-0835-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92700
in Annals of Forest Science [en ligne] > vol 76 n° 2 (June 2019)[article]Retrieving soil surface roughness with the Hapke photometric model: Confrontation with the ground truth / Sébastien Labarre in Remote sensing of environment, vol 225 (May 2019)
![]()
[article]
Titre : Retrieving soil surface roughness with the Hapke photometric model: Confrontation with the ground truth Type de document : Article/Communication Auteurs : Sébastien Labarre, Auteur ; Stéphane Jacquemoud, Auteur ; Cécile Ferrari, Auteur ; Arthur Delorme, Auteur ; Allan Derrien, Auteur ; Raphaël Grandin, Auteur ; Mohamed Jalludin, Auteur ; F. LemaÎtre, Auteur ; Marianne Metois, Auteur ; Marc Pierrot-Deseilligny , Auteur ; Ewelina Rupnik
, Auteur ; Bernard Tanguy, Auteur
Année de publication : 2019 Projets : CAROLInA / Jacquemoud, Stéphane Article en page(s) : pp 1 - 15 Note générale : Bibliographie
The PhD thesis of Sébastien Labarre was funded by the Direction générale de l'armement (DGA) and by the Commissariat à l'énergie atomique et aux énergies alternatives (CEA). Field data were acquired in the frame of the CAROLInA (Characterization of Multi-Scale Roughness using OpticaL ImAgery) project funded by CNES.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Djibouti
[Termes descripteurs IGN] goniomètre
[Termes descripteurs IGN] image optique
[Termes descripteurs IGN] image Pléiades-HR
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] réflectance du sol
[Termes descripteurs IGN] rugosité du sol
[Termes descripteurs IGN] sol nuRésumé : (Auteur) Surface roughness can be defined as the mean slope angle integrated over all scales from the grain size to the local topography. It controls the energy balance of bare soils, in particular the angular distribution of scattered and emitted radiation. This provides clues to understand the intimate structure and evolution of planetary surfaces over ages. In this article we investigate the capacity of the Hapke photometric model, the most widely used in planetary science, to retrieve surface roughness from multiangular reflectance data. Its performance is still a question at issue and we lack validation experiments comparing model retrievals with ground measurements. To address this issue and to show the potentials and limits of the Hapke model, we compare the mean slope angle determined from very high resolution digital elevation models of volcanic and sedimentary terrains sampled in the Asal-Ghoubbet rift (Republic of Djibouti), to the photometric roughness estimated by model inversion on multiangular reflectance data measured on the ground (Chamelon field goniometer) and from space (Pleiades images). The agreement is good on moderately rough surfaces, in the domain of validity of the Hapke model, and poor on others. Numéro de notice : A2019-154 Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2019.02.014 date de publication en ligne : 02/03/2019 En ligne : https://doi.org/10.1016/j.rse.2019.02.014 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92492
in Remote sensing of environment > vol 225 (May 2019) . - pp 1 - 15[article]Comparison of high-density LiDAR and satellite photogrammetry for forest inventory / Grant D. Pearse in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
![]()
[article]
Titre : Comparison of high-density LiDAR and satellite photogrammetry for forest inventory Type de document : Article/Communication Auteurs : Grant D. Pearse, Auteur ; Jonathan P. Dash, Auteur ; Henrik J. Persson, Auteur ; Michael S. Watt, Auteur Année de publication : 2018 Article en page(s) : pp 257 - 267 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] densité de la végétation
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] forêt
[Termes descripteurs IGN] hauteur des arbres
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image Pléiades-HR
[Termes descripteurs IGN] inventaire forestier (techniques et méthodes)
[Termes descripteurs IGN] modèle numérique de surface de la canopée
[Termes descripteurs IGN] Nouvelle-Zélande
[Termes descripteurs IGN] photogrammétrie numérique
[Termes descripteurs IGN] Pinus radiata
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] surface terrière
[Termes descripteurs IGN] sylviculture
[Termes descripteurs IGN] volume en bois
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) Point cloud data derived from stereo satellite imagery has the potential to provide large-scale forest inventory assessment but these methods are known to include higher error than airborne laser scanning (ALS). This study compares the accuracy of forest inventory attributes estimated from high-density ALS (21.1 pulses m−2) point cloud data (PCD) and PCD derived from photogrammetric methods applied to stereo satellite imagery obtained over a Pinus radiata D. Don plantation forest in New Zealand. The statistical and textural properties of the canopy height models (CHMs) derived from each point cloud were included alongside standard PCD metrics as a means of improving the accuracy of predictions for key forest inventory attributes. For mean top height (a measure of dominant height in a stand), ALS data produced better estimates (R2 = 0.88; RMSE = 1.7 m) than those obtained from satellite data (R2 = 0.81; RMSE = 2.1 m). This was attributable to a general over-estimation of canopy heights in the satellite PCD. ALS models produced poor estimates of stand density (R2 = 0.48; RMSE = 112.1 stems ha−1), as did the satellite PCD models (R2 = 0.42; RMSE = 118.4 stems ha−1). ALS models produced accurate estimates of basal area (R2 = 0.58; RMSE = 12 m2 ha−1), total stem volume (R2 = 0.72; RMSE = 107.5 m3 ha−1), and total recoverable volume (R2 = 0.74; RMSE = 92.9 m3 ha−1). These values differed little from the estimates of basal area (R2 = 0.57; RMSE = 12.2 m2 ha−1), total stem volume (R2 = 0.70; RMSE = 112.6 m3 ha−1), and total recoverable volume (R2 = 0.73; RMSE = 96 m3 ha−1) obtained from satellite PCD models. The statistical and textural metrics computed from the CHMs were important variables in all of the models derived from both satellite and ALS PCD, nearly always outranking the standard PCD metrics in measures of importance. For the satellite PCD models, the CHM-derived metrics were nearly exclusively identified as important variables. These results clearly show that point cloud data obtained from stereo satellite imagery are useful for prediction of forest inventory attributes in intensively managed forests on steeper terrain. Furthermore, these data offer forest managers the benefit of obtaining both inventory data and high-resolution multispectral imagery from a single product. Numéro de notice : A2018-295 Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.06.006 date de publication en ligne : 22/06/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.06.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90413
in ISPRS Journal of photogrammetry and remote sensing > vol 142 (August 2018) . - pp 257 - 267[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018081 RAB Revue Centre de documentation En réserve 3L Disponible 081-2018083 DEP-EXM Revue MATIS Dépôt en unité Exclu du prêt 081-2018082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Multi-scale assessment of invasive plant species diversity using Pléiades 1A, RapidEye and Landsat-8 data / Siddhartha Khare in Geocarto international, vol 33 n° 7 (July 2018)
![]()
[article]
Titre : Multi-scale assessment of invasive plant species diversity using Pléiades 1A, RapidEye and Landsat-8 data Type de document : Article/Communication Auteurs : Siddhartha Khare, Auteur ; Hooman Latifi, Auteur ; Sanjay Kumar Ghosh, Auteur Année de publication : 2018 Article en page(s) : pp 681 - 698 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] arbre caducifolié
[Termes descripteurs IGN] espèce exotique envahissante
[Termes descripteurs IGN] forêt
[Termes descripteurs IGN] Himalaya
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image optique
[Termes descripteurs IGN] image Pléiades-HR
[Termes descripteurs IGN] image RapidEye
[Termes descripteurs IGN] réflectance végétaleRésumé : (Auteur) We used a full remote sensing-based approach to assess plant species diversity in large and inaccessible areas affected by Lantana camara L., a common invasive species within the deciduous forests of Western Himalayan region of India, using spectral heterogeneity information extracted from optical data. The spread of L. camara was precisely mapped by Pléiades 1A data, followed by comparing Pléiades 1A, RapidEye and Landsat-8 OLI – assessed plant species diversities in invaded areas. The single plant species analysis was improved by Pléiades 1A-based diversity analysis, and higher species diversity values were observed for mixed vegetation cover. Furthermore, lower Coefficient of Variation and Renyi diversity values were observed where L. camara was the only species, while higher variations were observed in areas with a mixed spectral reflectance. This study was concluded to add a crucial baseline to the previous studies on remote sensing-based solutions for rapid estimation of biodiversity attributes. Numéro de notice : A2018-334 Thématique : BIODIVERSITE/FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2017.1289562 date de publication en ligne : 10/02/2017 En ligne : https://doi.org/10.1080/10106049.2017.1289562 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90530
in Geocarto international > vol 33 n° 7 (July 2018) . - pp 681 - 698[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2018031 SL Revue Centre de documentation Revues en salle Disponible 3D reconstruction from multi-view VHR-satellite images in MicMac / Ewelina Rupnik in ISPRS Journal of photogrammetry and remote sensing, vol 139 (May 2018)
PermalinkAccuracy assessment of different digital surface models / Ugur Alganci in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
PermalinkNouvelle méthode en cascade pour la classification hiérarchique multi-temporelle ou multi-capteur d'images satellitaires haute résolution / Ihsen Hedhli in Revue Française de Photogrammétrie et de Télédétection, n° 216 (février 2018)
PermalinkEvaluation des performances des modèles numérique d’élévation issus de l’imagerie tri-stéréo Pléiades pour le suivi de l’évolution morphologique des dunes littorales / Mannaïg L'haridon (2018)
PermalinkMise en évidence de l’activité récente des failles du bassin de Naryn (Kyrgyzstan) à partir de données photogrammétriques Pléiades et drone : un nouvel apport pour l’aléa sismique / Aurélie Médard (2018)
PermalinkPan-sharpening quality investigation of PLÉIADES-1A images / Mustafa Ozendi in Geocarto international, vol 31 n° 7 - 8 (July - August 2016)
PermalinkRefined satellite image orientation in the free open-source photogrammetric tools Apero/MicMac / Ewelina Rupnik in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, III-1 (July 2016)
![]()
PermalinkSupervised classification of very high resolution optical images using wavelet-based textural features / Olivier Regniers in IEEE Transactions on geoscience and remote sensing, vol 54 n° 6 (June 2016)
PermalinkL’imagerie satellitaire stéréoscopique très haute résolution spatiale Pléiades : apport pour les problématiques urbaines / Dominique Hébrard in Signature, n° 60 (mai 2016)
PermalinkSupporting polio eradication with Pléiades satellite imagery : reaching every household in Nigeria / Frédérique Coumans in GIM international [en ligne], vol 30 n° 5 (May 2016)
Permalink