Descripteur
Documents disponibles dans cette catégorie (408)



Etendre la recherche sur niveau(x) vers le bas
Estimating generalized measures of local neighbourhood context from multispectral satellite images using a convolutional neural network / Alex David Singleton in Computers, Environment and Urban Systems, vol 95 (July 2022)
![]()
[article]
Titre : Estimating generalized measures of local neighbourhood context from multispectral satellite images using a convolutional neural network Type de document : Article/Communication Auteurs : Alex David Singleton, Auteur ; Dani Arribas-Bel, Auteur ; John Murray, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101802 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] analyse en composantes principales
[Termes IGN] apprentissage automatique
[Termes IGN] bâtiment
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] Grande-Bretagne
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] morphologie urbaine
[Termes IGN] pondération
[Termes IGN] processeur graphiqueRésumé : (auteur) The increased availability of high-resolution multispectral imagery captured by remote sensing platforms provides new opportunities for the characterisation and differentiation of urban context. The discovery of generalized latent representations from such data are however under researched within the social sciences. As such, this paper exploits advances in machine learning to implement a new method of capturing measures of urban context from multispectral satellite imagery at a very small area level through the application of a convolutional autoencoder (CAE). The utility of outputs from the CAE is enhanced through the application of spatial weighting, and the smoothed outputs are then summarised using cluster analysis to generate a typology comprising seven groups describing salient patterns of differentiated urban context. The limits of the technique are discussed with reference to the resolution of the satellite data utilised within the study and the interaction between the geography of the input data and the learned structure. The method is implemented within the context of Great Britain, however, is applicable to any location where similar high resolution multispectral imagery are available. Numéro de notice : A2022-370 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101802 Date de publication en ligne : 19/04/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101802 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100606
in Computers, Environment and Urban Systems > vol 95 (July 2022) . - n° 101802[article]Graph-based block-level urban change detection using Sentinel-2 time series / Nan Wang in Remote sensing of environment, vol 274 (June 2022)
![]()
[article]
Titre : Graph-based block-level urban change detection using Sentinel-2 time series Type de document : Article/Communication Auteurs : Nan Wang, Auteur ; Wei Li, Auteur ; Ran Tao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112993 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse multivariée
[Termes IGN] bâtiment
[Termes IGN] Chine
[Termes IGN] détection de changement
[Termes IGN] espace vert
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] graphe
[Termes IGN] image Sentinel-MSI
[Termes IGN] occupation du sol
[Termes IGN] OpenStreetMap
[Termes IGN] segmentation d'image
[Termes IGN] série temporelle
[Termes IGN] zone urbaineRésumé : (auteur) Remote sensing technology has been frequently used to obtain information on changes in urban land cover because of its vast spatial coverage and timeliness of observation. Block-level change detection with high temporal resolution image data provides fine detail of urban changes, is suitable for urban management, and has gradually received widespread attention. High-dimensional features are required to express the heterogeneous structure of the blocks. High-dimensional high-frequency time series, namely, multivariate time series, are formed by arranging high-dimensional features chronologically. Classic change detection methods treat multivariate time series as univariate time series one by one. Few studies have analyzed the change in a multivariate time series by considering all variables as an entirety. Therefore, a graph-based segmentation for multivariate time series algorithm (MTS-GS) is proposed in this paper. Specifically, 1) we construct a similarity matrix to explore the changing patterns of multivariate time series for seasonal change, trend change, abrupt change, and noise disturbance; 2) a multivariate time series graph is defined based on the changing patterns; and 3) the corresponding graph segmentation algorithm is proposed in the paper to detect the abrupt and trend changes under noise and seasonal disturbances. Sentinel-2 images of the rapidly developing third-tier city of Luoyang, Henan province, China, are adopted to validate the algorithm. The F1-score in the spatial domain is 84.1%; the producer's and the user's accuracy in the temporal dimension are 81.8% and 80.1%, respectively. Seven change types are defined and extracted, showing the development pattern and the efficiency of land use in the city. Furthermore, the proposed MTS-GS can be used for pixel-level change detection and performs well under various time intervals and cloud covers. Numéro de notice : A2022-399 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.112993 Date de publication en ligne : 16/03/2022 En ligne : https://doi.org/10.1016/j.rse.2022.112993 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100699
in Remote sensing of environment > vol 274 (June 2022) . - n° 112993[article]Classification of vegetation classes by using time series of Sentinel-2 images for large scale mapping in Cameroon / Hermann Tagne in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-3-2022 (2022 edition)
![]()
[article]
Titre : Classification of vegetation classes by using time series of Sentinel-2 images for large scale mapping in Cameroon Type de document : Article/Communication Auteurs : Hermann Tagne, Auteur ; Arnaud Le Bris , Auteur ; David Monkam, Auteur ; Clément Mallet
, Auteur
Année de publication : 2022 Projets : TOSCA Parcelle / Le Bris, Arnaud Article en page(s) : pp 673 - 680 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Cameroun
[Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] occupation du sol
[Termes IGN] série temporelleRésumé : (auteur) Sentinel-2 satellites provide dense image time series exhibiting high spectral, spatial and temporal resolutions. These images are in particular of utter interest for Land-Cover (LC) mapping at large scales. LC maps can now be computed on a yearly basis at the scale of a country with efficient supervised classifiers, assuming suitable training data are available. However, the efficient exploitation of large amount of Sentinel-2 imagery still remain challenging on unexplored areas where state-of-the-art classifiers are prone to fail. This paper focuses on Land-Cover mapping over Cameroon for the purpose of updating the Very High Resolution national topographic geodatabase. The ι2 framework is adopted and tested for the specificity of the country. Here, experiments focus on generic vegetation classes (five) which enables providing robust focusing masks for higher resolution classifications. Two strategies are compared: (i) a LC map is calculated out of a year long time series and (ii) monthly LC maps are generated and merged into a single yearly map. Satisfactory accuracy scores are obtained (>94% in Overall Accuracy), allowing to provide a first step towards finer-grained map retrieval. Numéro de notice : A2022-426 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article DOI : 10.5194/isprs-annals-V-3-2022-673-2022 Date de publication en ligne : 18/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-3-2022-673-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100731
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-3-2022 (2022 edition) . - pp 673 - 680[article]Deep learning for the detection of early signs for forest damage based on satellite imagery / Dennis Wittich in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
![]()
[article]
Titre : Deep learning for the detection of early signs for forest damage based on satellite imagery Type de document : Article/Communication Auteurs : Dennis Wittich, Auteur ; Franz Rottensteiner, Auteur ; Mirjana Voelsen, Auteur ; Christian Heipke, Auteur ; Sönke Müller, Auteur Année de publication : 2022 Article en page(s) : pp 307 - 315 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] dégradation de la flore
[Termes IGN] dommage forestier causé par facteurs naturels
[Termes IGN] fonction de perte
[Termes IGN] image Sentinel-MSI
[Termes IGN] régression
[Termes IGN] série temporelle
[Termes IGN] surveillance forestièreRésumé : (auteur) We present an approach for detecting early signs for upcoming forest damages by training a Convolutional Neural Network (CNN) for the pixel-wise prediction of the remaining life-time (RLT) of trees in forests based on Sentinel-2 imagery. We focus on a scenario in which reference data are only available for a related task, namely for a bi-temporal pixel-wise classification of forest degradation. This reference is used to train a CNN for the pixel-wise prediction of forest degradation. In this context, we propose a new sub-sampling-based approach for compensating the effects of a heavy class imbalance in the training data. Using the resulting classification model, we predict semi-labels for images of a Sentinel-2 time series, from which training data for a CNN designed to regress the RLT can be derived after some label cleansing. However, due to data gaps in the time series, e.g. caused by clouds, only intervals can be derived for the target variable to be regressed, and for some training pixels one of the interval limits may even be unknown. Consequently, we propose a new loss function for training a CNN for regressing the RLT that only requires the known interval limits. The method is evaluated on a data set in Germany, covering a time-span of 5 years. We show that the proposed sub-sampling strategy for dealing with strong label imbalance when training the classifier significantly reduces the training time compared to other approaches. We further show that our model predicts the RLT with a maximum error of two months for 80% of the forest pixels that die within one year from the acquisition date of the Sentinel-2 image. Numéro de notice : 2022-432 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.5194/isprs-annals-V-2-2022-307-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2022-307-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100738
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2022 (2022 edition) . - pp 307 - 315[article]Framework for automatic coral reef extraction using Sentinel-2 image time series / Qizhi Zhang in Marine geodesy, vol 45 n° 3 (May 2022)
![]()
[article]
Titre : Framework for automatic coral reef extraction using Sentinel-2 image time series Type de document : Article/Communication Auteurs : Qizhi Zhang, Auteur ; Jian Zhang, Auteur ; Liang Cheng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 195 - 231 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Chine
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtrage de points
[Termes IGN] filtrage spatiotemporel
[Termes IGN] image Sentinel-MSI
[Termes IGN] mesure de similitude
[Termes IGN] nébulosité
[Termes IGN] récif corallien
[Termes IGN] série temporelleRésumé : (auteur) Using supervised and unsupervised classification on a single image to extract coral reef extent results in missing data and wrong extraction results. To improve the accuracy of coral reef extraction, this study proposes a novel technical framework for automatic coral reef extraction based on an image filtering strategy and spatiotemporal similarity measurements of pixel-level Sentinel-2 image time series. This method was applied to the Anda Reef, Daxian Reef, and Nanhua Reef, China, using 1464 Sentinel-2 images obtained from 2015–2020. Sentinel-2 images were automatically selected considering space, time, cloud cover, and image entropy after atmospheric correction. With the binary classification measurement standard using the digitization coral reef results of the Sentinel-2 images as the true value, the time series established by the modified normalized difference water index demonstrated high robustness and accuracy. Analyzing the time series curves of the coral reef and deep water verified that the spatiotemporal similarity measurement of this framework can stably extract the boundaries of the coral reef. Numéro de notice : A2022-353 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/01490419.2022.2051648 Date de publication en ligne : 28/03/2022 En ligne : https://doi.org/10.1080/01490419.2022.2051648 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100550
in Marine geodesy > vol 45 n° 3 (May 2022) . - pp 195 - 231[article]Multi-modal temporal attention models for crop mapping from satellite time series / Vivien Sainte Fare Garnot in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)
PermalinkDetecting land use and land cover change on Barbuda before and after the Hurricane Irma with respect to potential land grabbing: A combined volunteered geographic information and multi sensor approach / Andreas Rienow in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
PermalinkFlood mapping using multi-temporal Sentinel-1 SAR images: A case study—Inaouene watershed from Northeast of Morocco / Brahim Benzougagh in Iranian Journal of Science and Technology - Transactions of Civil Engineering, vol 46 n° 2 (April 2022)
PermalinkA national fuel type mapping method improvement using sentinel-2 satellite data / Alexandra Stefanidou in Geocarto international, vol 37 n° 4 (April 2022)
PermalinkParcel-based summer maize mapping and phenology estimation combined using Sentinel-2 and time series Sentinel-1 data / Yanyan Wang in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
PermalinkThe integration of multi-source remotely sensed data with hierarchically based classification approaches in support of the classification of wetlands / Aaron Judah in Canadian journal of remote sensing, vol 48 n° 2 (April 2022)
PermalinkAboveground biomass of salt-marsh vegetation in coastal wetlands: Sample expansion of in situ hyperspectral and Sentinel-2 data using a generative adversarial network / Chen Chen in Remote sensing of environment, vol 270 (March 2022)
PermalinkCartographie des surfaces pastorales à l’aide des données Sentinel 2 L3A et des données ouvertes : Promesses et réalités / Urcel Kalenga Tshingomba in Revue internationale de géomatique, vol 30 n° 3-4 (juillet - décembre 2020)
PermalinkComparaison des images satellite et aériennes dans le domaine de la détection d’obstacles à la navigation aérienne et de leur mise à jour / Olivier de Joinville in XYZ, n° 170 (mars 2022)
PermalinkDynamic modelling of rice leaf area index with quad-source optical imagery and machine learning regression models / Lamin R. Mansaray in Geocarto international, vol 37 n° 3 ([01/03/2022])
Permalink