Descripteur
Termes descripteurs IGN > imagerie > image spatiale > image satellite > image SPOT
image SPOTSynonyme(s)données spotVoir aussi |


Etendre la recherche sur niveau(x) vers le bas
Can SPOT-6/7 CNN semantic segmentation improve Sentinel-2 based land cover products? sensor assessment and fusion / Olivier Stocker in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
![]()
[article]
Titre : Can SPOT-6/7 CNN semantic segmentation improve Sentinel-2 based land cover products? sensor assessment and fusion Type de document : Article/Communication Auteurs : Olivier Stocker, Auteur ; Arnaud Le Bris , Auteur
Année de publication : 2020 Projets : MAESTRIA / Mallet, Clément Conférence : ISPRS 2020, Commission 2, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 2 Projets : TOSCA Parcelle / Le Bris, Arnaud Article en page(s) : pp 557 - 564 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image SPOT 7
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] segmentation sémantiqueRésumé : (auteur) Needs for fine-grained, accurate and up-to-date land cover (LC) data are important to answer both societal and scientific purposes. Several automatic products have already been proposed, but are mostly generated out of satellite sensors like Sentinel-2 (S2) or Landsat. Metric sensors, e.g. SPOT-6/7, have been less considered, while they enable (at least annual) acquisitions at country scale and can now be efficiently processed thanks to deep learning (DL) approaches. This study thus aimed at assessing whether such sensor can improve such land cover products. A custom simple yet effective U-net - Deconv-Net inspired DL architecture is developed and applied to SPOT-6/7 and S2 for different LC nomenclatures, aiming at comparing the relevance of their spatial/spectral configurations and investigating their complementarity. The proposed DL architecture is then extended to data fusion and applied to previous sensors. At the end, the proposed fusion framework is used to enrich an existing S2 based LC product, as it is generic enough to cope with fusion at distinct levels. Numéro de notice : A2020-504 Affiliation des auteurs : LaSTIG (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2020-557-2020 date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2020-557-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95644
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > V-2 (August 2020) . - pp 557 - 564[article]A worldwide 3D GCP database inherited from 20 years of massive multi-satellite observations / Laure Chandelier in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
![]()
[article]
Titre : A worldwide 3D GCP database inherited from 20 years of massive multi-satellite observations Type de document : Article/Communication Auteurs : Laure Chandelier , Auteur ; Laurent Coeurdevey, Auteur ; Sébastien Bosch, Auteur ; Pascal Favé, Auteur ; Roland Gachet, Auteur ; Alain Orsoni, Auteur ; Thomas Tilak
, Auteur ; Alexis Barot, Auteur
Année de publication : 2020 Projets : 1-Pas de projet / Conférence : ISPRS 2020, Commission 2, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 2 Article en page(s) : pp 15 - 23 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] base de données d'images
[Termes descripteurs IGN] compensation par bloc
[Termes descripteurs IGN] données localisées de référence
[Termes descripteurs IGN] formatage
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] image multi sources
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] image SPOT 6
[Termes descripteurs IGN] image SPOT 7
[Termes descripteurs IGN] image SPOT-HRS
[Termes descripteurs IGN] informatique en nuage
[Termes descripteurs IGN] Institut national de l'information géographique et forestière (France)
[Termes descripteurs IGN] point d'appui
[Termes descripteurs IGN] spatiotriangulationRésumé : (auteur) High location accuracy is a major requirement for satellite image users. Target performance is usually achieved thanks to either specific on-board satellite equipment or an auxiliary registration reference dataset. Both methods may be expensive and with certain limitations in terms of performance. The Institut national de l’information géographique et forestière (IGN) and Airbus Defence and Space (ADS) have worked together for almost 20 years, to build reference data for improving image location using multi-satellite observations. The first geometric foundation created has mainly used SPOT 5 High Resolution Stereoscopic (HRS) imagery, ancillary Ground Control Points (GCP) and Very High Resolution (VHR) imagery, providing a homogenous location accuracy of 10m CE90 almost all over the world in 2010. Space Reference Points (SRP) is a new worldwide 3D GCP database, built from a plethoric SPOT 6/7 multi-view archive, largely automatically processed, with cloud-based technologies. SRP aims at providing a systematic and reliable solution for image location (Unmanned Aerial Vehicle, VHR satellite imagery, High Altitudes Pseudo-Satellite…) and similar topics thanks to a high-density point distribution with a 3m CE90 accuracy. This paper describes the principle of SRP generation and presents the first validation results. A SPOT 6/7 smart image selection is performed to keep only relevant images for SRP purpose. The location of these SPOT 6/7 images is refined thanks to a spatiotriangulation on the worldwide geometric foundation, itself improved where needed. Points making up the future SRP database are afterward extracted thanks to classical feature detection algorithms and with respect to the expected density. Different filtering methods are applied to keep the best candidates. The last step of the processing chain is the formatting of the data to the delivery format, including metadata. An example of validation of SRP concept and specification on two tests sites (Spain and China) is then given. As a conclusion, the on-going production is shortly presented. Numéro de notice : A2020-474 Affiliation des auteurs : IGN+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2020-15-2020 date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2020-15-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95613
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > V-2 (August 2020) . - pp 15 - 23[article]Spatiotemporal variation of NDVI in the vegetation growing season in the source region of the yellow river, China / Mingyue Wang in ISPRS International journal of geo-information, vol 9 n° 4 (April 2020)
![]()
[article]
Titre : Spatiotemporal variation of NDVI in the vegetation growing season in the source region of the yellow river, China Type de document : Article/Communication Auteurs : Mingyue Wang, Auteur ; Jun’e Fu, Auteur ; Zhitao Wu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 17 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] coefficient de corrélation
[Termes descripteurs IGN] données météorologiques
[Termes descripteurs IGN] données spatiotemporelles
[Termes descripteurs IGN] écosystème
[Termes descripteurs IGN] Fleuve jaune (Chine)
[Termes descripteurs IGN] image MODIS
[Termes descripteurs IGN] image SPOT
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] précipitation
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] températureRésumé : (auteur) Research on vegetation variation is an important aspect of global warming studies. The quantification of the relationship between vegetation change and climate change has become a central topic and challenge in current global change studies. The source region of the Yellow River (SRYR) is an appropriate area to study global change because of its unique natural conditions and vulnerable terrestrial ecosystem. Therefore, we chose the SRYR for a case study to determine the driving forces behind vegetation variation under global warming. Using the Normalized Difference Vegetation Index (NDVI) and climate data, we investigated the NDVI variation in the growing season in the region from 1998 to 2016 and its response to climate change based on trend analysis, the Mann–Kendall trend test and partial correlation analysis. Finally, an NDVI–climate mathematical model was built to predict the NDVI trends from 2020 to 2038. The results indicated the following: (1) over the past 19 years, the NDVI showed an increasing trend, with a growth rate of 0.00204/a. There was an upward trend in NDVI over 71.40% of the region. (2) Both the precipitation and temperature in the growing season showed upward trends over the last 19 years. NDVI was positively correlated with precipitation and temperature. The areas with significant relationships with precipitation covered 31.01% of the region, while those with significant relationships with temperature covered 56.40%. The sensitivity of the NDVI to temperature was higher than that to precipitation. Over half (56.58%) of the areas were found to exhibit negative impacts of human activities on the NDVI. (3) According to the simulation, the NDVI will increase slightly over the next 19 years, with a linear tendency of 0.00096/a. From the perspective of spatiotemporal changes, we combined the past and future variations in vegetation, which could adequately reflect the long-term vegetation trends. The results provide a theoretical basis and reference for the sustainable development of the natural environment and a response to vegetation change under the background of climate change in the study area. Numéro de notice : A2020-262 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9040282 date de publication en ligne : 24/04/2020 En ligne : https://doi.org/10.3390/ijgi9040282 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95022
in ISPRS International journal of geo-information > vol 9 n° 4 (April 2020) . - 17 p.[article]Multi-Spatial Resolution Satellite and sUAS Imagery for Precision Agriculture on Smallholder Farms in Malawi / Brad G. Peter in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 2 (February 2020)
![]()
[article]
Titre : Multi-Spatial Resolution Satellite and sUAS Imagery for Precision Agriculture on Smallholder Farms in Malawi Type de document : Article/Communication Auteurs : Brad G. Peter, Auteur ; Joseph P. Messina, Auteur ; Jon W. Carroll, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 107 - 119 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] agriculture de précision
[Termes descripteurs IGN] analyse multirésolution
[Termes descripteurs IGN] exploitation agricole
[Termes descripteurs IGN] image Pléiades
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image SPOT 6
[Termes descripteurs IGN] MalawiRésumé : (Auteur) A collection of spectral indices, derived from a range of remote sensing imagery spatial resolutions, are compared to on-farm measurements of maize chlorophyll content and yield at two trial farms in central Malawi to evaluate what spatial resolutions are most effective for relating multispectral images with crop status. Single and multiple linear regressions were tested for spatial resolutions ranging from 7 cm to 20 m using a small unmanned aerial system (sUAS) and satellite imagery from Planet, SPOT 6, Pléiades, and Sentinel-2. Results suggest that imagery with spatial resolutions nearer the maize plant scale (i.e., 14–27 cm) are most effective for relating spectral signals with crop health on smallholder farms in Malawi. Consistent with other studies, green-band indices were more strongly correlated with maize chlorophyll content and yield than conventional red-band indices, and multivariable models often outperformed single variable models. Numéro de notice : A2020-127 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.2.107 date de publication en ligne : 01/02/2020 En ligne : https://doi.org/10.14358/PERS.86.2.107 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94796
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 2 (February 2020) . - pp 107 - 119[article]Global iterative geometric calibration of a linear optical satellite based on sparse GCPs / Yingdong Pi in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)
![]()
[article]
Titre : Global iterative geometric calibration of a linear optical satellite based on sparse GCPs Type de document : Article/Communication Auteurs : Yingdong Pi, Auteur ; Xin Li, Auteur ; Bo Yang, Auteur Année de publication : 2020 Article en page(s) : pp 436 - 446 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] élément d'orientation interne
[Termes descripteurs IGN] erreur systématique
[Termes descripteurs IGN] étalonnage géométrique
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] image SPOT-HRV
[Termes descripteurs IGN] itération
[Termes descripteurs IGN] longueur focale
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] point d'appuiRésumé : (auteur) Independent methods for geometric calibration (GC) have become an important research direction in the field of optical satellite technology. The main purpose of this research is to eliminate dependence on ground calibration sites using relative constraints between images. Based on a systematic analysis of these relative constraints, we found that it was difficult, if not impossible, to completely eliminate ground constraints, although the number of ground control points (GCPs) required can be greatly reduced. To achieve practical GC with high accuracy and low cost, we proposed a new method to compensate for systematic errors in linear optical satellite data acquisition using only the relative constraints between two overlapped images, namely, the corresponding elevation constraints and sparse GCPs. We first demonstrated the feasibility of GC with relative constraints and established an optimized GC model suitable for these relative constraints. We then presented a global iterative method to eliminate inaccuracies in internal calibration caused by the different distributions of GCPs within two images. The nadir (NAD) linear camera on board the Zi-Yuan 3 (ZY-3) satellite was used to evaluate the feasibility of the presented GC method; the results indicated that the present method effectively compensated for systematic errors. Thus, this article demonstrated the feasibility of GC without calibration sites. Numéro de notice : A2020-075 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2936891 date de publication en ligne : 12/09/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2936891 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94607
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 1 (January 2020) . - pp 436 - 446[article]Vers une occupation du sol France entière par imagerie satellite à très haute résolution / Tristan Postadjian (2020)
PermalinkLong-term soil moisture content estimation using satellite and climate data in agricultural area of Mongolia / Enkhjargal Natsagdorj in Geocarto international, vol 34 n° 7 ([01/06/2019])
PermalinkA new stochastic simulation algorithm for image-based classification : Feature-space indicator simulation / Qing Wang in ISPRS Journal of photogrammetry and remote sensing, vol 152 (June 2019)
PermalinkPermalinkMultimodal scene understanding: algorithms, applications and deep learning, ch. 11. Decision fusion of remote-sensing data for land cover classification / Arnaud Le Bris (2019)
PermalinkUrban morpho-types classification from SPOT-6/7 imagery and Sentinel-2 time series / Arnaud Le Bris (2019)
PermalinkObject-based crop classification using multi-temporal SPOT-5 imagery and textural features with a Random Forest classifier / Huanxue Zhang in Geocarto international, vol 33 n° 10 (October 2018)
PermalinkPredicting tree diameter distributions from airborne laser scanning, SPOT 5 satellite, and field sample data in the perm region, Russia / Jussi Peuhkurinen in Forests, vol 9 n° 10 (October 2018)
PermalinkAssessment of Nigeriasat-1 satellite data for urban land use/land cover analysis using object-based image analysis in Abuja, Nigeria / Christopher Ifechukwude Chima in Geocarto international, vol 33 n° 9 (September 2018)
PermalinkSoil moisture estimation in Ferlo region (Senegal) using radar (ENVISAT/ASAR) and optical (SPOT/VEGETATION) data / Gayane Faye in The Egyptian Journal of Remote Sensing and Space Science, Vol. 21 suppl.1 (juillet 2018)
Permalink