Descripteur
Termes descripteurs IGN > télédétection > télédétection électromagnétique > télédétection aérospatiale > télédétection spatiale
télédétection spatialeSynonyme(s)télédétection satellitaire |



Etendre la recherche sur niveau(x) vers le bas
Geo-spatially modelling dengue epidemics in urban cities: a case study of Lahore, Pakistan / Muhammad Imran in Geocarto international, vol 36 n° 2 ([01/02/2021])
![]()
[article]
Titre : Geo-spatially modelling dengue epidemics in urban cities: a case study of Lahore, Pakistan Type de document : Article/Communication Auteurs : Muhammad Imran, Auteur ; Yasra Hamid, Auteur ; Abeer Mazher, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 197 - 211 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] diptère
[Termes descripteurs IGN] maladie tropicale
[Termes descripteurs IGN] modélisation spatiale
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] Pakistan
[Termes descripteurs IGN] régression géographiquement pondérée
[Termes descripteurs IGN] régression logistique
[Termes descripteurs IGN] risque sanitaire
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] télédétection spatiale
[Termes descripteurs IGN] zone intertropicale
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) The study objective is to predict the epidemiological impact of dengue fever arbovirosis in urban tropical areas of Pakistan. To do so, we used the GPS-based data of the Aedes larvae collected during 2014–2015 in Lahore. We developed a Geographically Weighted Logistic Regression (GWLR) model for Geospatially predicting larvae presence or absence in Lahore. Data on rainfall, temperature are included along with time series of the normalized difference vegetation index (NDVI) derived from Landsat imagery. We observed a high spatial variability of the GWLR parameter estimates of these variables in the study area. The GWLR model significantly (R2a = 0.78) explained the presence or absence of Aedes larvae with temperature, rainfall and NDVI variables in South and Southeast of the study area. In the North and North-West, however, GWLR relationships were observed weak in highly populated areas. Interpolating GWLR coefficients generate more accurate maps of Aedes larvae presence or absence. Numéro de notice : A2021-118 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1614100 date de publication en ligne : 10/06/2020 En ligne : https://doi.org/10.1080/10106049.2019.1614100 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96932
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 197 - 211[article]Examining the effectiveness of Sentinel-1 and 2 imagery for commercial forest species mapping / Mthembeni Mngadi in Geocarto international, vol 36 n° 1 ([01/01/2021])
![]()
[article]
Titre : Examining the effectiveness of Sentinel-1 and 2 imagery for commercial forest species mapping Type de document : Article/Communication Auteurs : Mthembeni Mngadi, Auteur ; John Odindi, Auteur ; Kabir Peerbhay, Auteur ; Onisimo Mutanga, Auteur Année de publication : 2021 Article en page(s) : pp 1 - 12 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] analyse discriminante
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] Eucalyptus (genre)
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] KwaZulu-Natal (Afrique du Sud)
[Termes descripteurs IGN] Pinus (genre)
[Termes descripteurs IGN] télédétection spatialeRésumé : (Auteur) The successful launch and operation of the Sentinel satellite platform has provided access to freely available remotely sensed data useful for commercial forest species discrimination. Sentinel – 1 (S1) with a synthetic aperture radar (SAR) sensor and Sentinel – 2 (S2) multi-spectral sensor with additional and strategically positioned bands offer great potential for providing reliable information for discriminating and mapping commercial forest species. In this study, we sought to determine the value of S1 and S2 data characteristics in discriminating and mapping commercial forest species. Using linear discriminant analysis (LDA) algorithm, S2 multi-spectral imagery showed an overall classification accuracy of 84% (kappa = 0.81), with bands such as the red-edge (703.9–740.2 nm), narrow near infrared (835.1–864.8 nm), and short wave infrared (1613.7–2202.4 nm) particularly influential in discriminating individual forest species stands. When Sentinel 2’s spectral wavebands were fused with Sentinel 1’s (SAR) VV and VH polarimetric modes, overall classification accuracies improved to 87% (kappa = 0.83) and 88% (kappa = 0.85), respectively. These findings demonstrate the value of combining Sentinel’s multispectral and SAR structural information characteristics in improving commercial forest species discrimination. These, in addition to the sensors free availability, higher spatial resolution and larger swath width, offer unprecedented opportunities for improved local and large scale commercial forest species discrimination and mapping. Numéro de notice : A2021-050 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1585483 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1585483 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96719
in Geocarto international > vol 36 n° 1 [01/01/2021] . - pp 1 - 12[article]The geometric imaging model for high-resolution optical remote sensing satellites considering light aberration and atmospheric refraction errors / Mi Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 6 (June 2020)
![]()
[article]
Titre : The geometric imaging model for high-resolution optical remote sensing satellites considering light aberration and atmospheric refraction errors Type de document : Article/Communication Auteurs : Mi Wang, Auteur ; Ying Zhu, Auteur ; Yanli Wang, Auteur ; Yufeng Cheng, Auteur Année de publication : 2020 Article en page(s) : pp 373 -382 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] aberration chromatique
[Termes descripteurs IGN] aberration géométrique
[Termes descripteurs IGN] correction atmosphérique
[Termes descripteurs IGN] image optique
[Termes descripteurs IGN] réfraction atmosphérique
[Termes descripteurs IGN] satellite d'observation de la Terre
[Termes descripteurs IGN] télédétection spatialeRésumé : (Auteur) With advances in satellite maneuvering imaging capability, stereoscopic images with large roll and pitch angles can be captured to improve the efficiency of observations. At the same time, the influences of light aberration and atmospheric refraction on image positioning accuracy will be more significant. However, these errors are not accounted for in the traditional imaging and calibration model for optical agile satellites. In this study, the formation mechanisms of the aberration and atmospheric refraction errors in optical remote sensing satellite Earth observation imaging were analyzed quantitatively, and correction models were constructed. From this, the traditional geometric imaging model was refined by introducing a correction model for aberration and atmospheric refraction errors to create a more comprehensive geometric imaging model. The feasibility of an extended rational function model, based on the constructed more comprehensive geometric imaging model, was verified quantitatively. Numéro de notice : A2020-242 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.6.373 date de publication en ligne : 01/06/2020 En ligne : https://doi.org/10.14358/PERS.86.6.373 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95204
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 6 (June 2020) . - pp 373 -382[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020061 SL Revue Centre de documentation Revues en salle Disponible Intertidal topography mapping using the waterline method from Sentinel-1 & -2 images: The examples of Arcachon and Veys Bays in France / Edward Salameh in ISPRS Journal of photogrammetry and remote sensing, vol 163 (May 2020)
![]()
[article]
Titre : Intertidal topography mapping using the waterline method from Sentinel-1 & -2 images: The examples of Arcachon and Veys Bays in France Type de document : Article/Communication Auteurs : Edward Salameh, Auteur ; Frédéric Frappart, Auteur ; Imen Turki, Auteur ; Benoit Laignel, Auteur Année de publication : 2020 Article en page(s) : pp 98 - 120 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] aménagement du littoral
[Termes descripteurs IGN] Arcachon (bassin d')
[Termes descripteurs IGN] carte topographique
[Termes descripteurs IGN] Cotentin
[Termes descripteurs IGN] estran
[Termes descripteurs IGN] France (administrative)
[Termes descripteurs IGN] hydrodynamique
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] niveau de l'eau
[Termes descripteurs IGN] sédiment
[Termes descripteurs IGN] télédétection spatiale
[Termes descripteurs IGN] trait de côte
[Termes descripteurs IGN] zone tamponRésumé : (auteur) Intertidal flats lying as a buffer zone between land and sea provide critical services including protection against storm surges and coastal flooding. These environments are characterized by a continuous redistribution of sediment and changes in topography. Sea level rise, anthropogenic pressures, and their related stressors have a considerable impact on these areas and are expected to put them under more stress; hence the increased need for frequent and updated topography maps. Comparing to traditional surveying approaches, spaceborne remote sensing is able to provide topography maps more frequently with a lower cost and a higher coverage. The latter is currently considered as an established tool for measuring intertidal topography. In this study, an improved approach of the waterline method was developed to derive intertidal Digital Elevation Models (DEMs). The changes include a faster, more efficient and quasi-automatic detection and post-processing of waterlines. The edge detection technique consists in combining a k-means based segmentation and an active contouring procedure. This method was designed to generate closed contours in order to enable an automatization of the post-processing of the extracted waterlines. The waterlines were extracted from Sentinel-1 and Sentinel-2 images for two bays located on the French Coast: the Arcachon lagoon and the Bay of Veys. DEMs were generated for the Arcachon Bay between 2015 and 2018, and for the Bay of Veys between 2016 and 2018 using satellite acquisitions made during summer (low storm activity period). The comparison of the generated DEMs with lidar observations showed an error of about 19–25 cm. This study also demonstrated that the waterline method applied to Sentinel images is suitable for monitoring the morpho-sedimentary evolution in intertidal areas. By comparing the DEMs generated between 2016 and 2018, the Arcachon Bay and the Bay of Veys experienced net volume losses of 1.12 × 106 m3 and 0.70 × 106 m3 respectively. The generated DEMs provide useful and needed information for several scientific applications (e.g., sediment balance, hydrodynamic modelling), but also for authorities and stakeholders for coastal management and implementation of ecosystem protection policies. Numéro de notice : A2020-138 Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.03.003 date de publication en ligne : 13/03/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.03.003 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94756
in ISPRS Journal of photogrammetry and remote sensing > vol 163 (May 2020) . - pp 98 - 120[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020051 SL Revue Centre de documentation Revues en salle Disponible 081-2020053 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A Fusion Approach for Water Area Classification Using Visible, Near Infrared and Synthetic Aperture Radar for South Asian Conditions / Shahryar K. Ahmad in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
![]()
[article]
Titre : A Fusion Approach for Water Area Classification Using Visible, Near Infrared and Synthetic Aperture Radar for South Asian Conditions Type de document : Article/Communication Auteurs : Shahryar K. Ahmad, Auteur ; Faisal Hossain, Auteur ; Hisham Eldardiry, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 2471 - 2480 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Bangladesh
[Termes descripteurs IGN] climat tropical
[Termes descripteurs IGN] eau de surface
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image PlanetScope
[Termes descripteurs IGN] image proche infrarouge
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] plan d'eau
[Termes descripteurs IGN] radar à antenne synthétique
[Termes descripteurs IGN] reconnaissance de surface
[Termes descripteurs IGN] surveillance hydrologique
[Termes descripteurs IGN] télédétection spatiale
[Termes descripteurs IGN] zone humideRésumé : (auteur) Consistent estimation of water surface area from remote sensing remains challenging in regions such as South Asia with vegetation, mountainous topography, and persistent monsoonal cloud cover. High-resolution optical imagery, which is often used for global inundation mapping, is highly impacted by clouds, while synthetic aperture radar (SAR) imagery is not impacted by clouds and is affected by both topographic layover and vegetation. Here, we compare and contrast inundation extent measurements from visible (Landsat-8 and Sentinel-2) and SAR (Sentinel-1) imagery. Each data type (wavelength) has complementary strengths and weaknesses which were gauged separately over selected water bodies in Bangladesh. High-resolution cloud-free PlanetScope imagery at 3-m resolution was used as a reference to check the accuracy of each technique and data type. Next, the optical and radar images were fused for a rule-based water area classification algorithm to derive the optimal decision for the water mask. Results indicate that the fusion approach can improve the overall accuracy by up to 3.8%, 18.2%, and 8.3% during the wet season over using the individual products of Landsat8, Sentinel-1, and Sentinel-2, respectively, at three sites, while providing increased observational frequency. The fusion-derived products resulted in overall accuracy ranging from 85.8% to 98.7% and Kappa coefficient varying from 0.61 to 0.83. The proposed SAR-visible fusion technique has potential for improving satellite-based surface water monitoring and storage changes, especially for smaller water bodies in humid tropical climate of South Asia. Numéro de notice : A2020-198 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2950705 date de publication en ligne : 19/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2950705 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94868
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 4 (April 2020) . - pp 2471 - 2480[article]What, where, and how to transfer in SAR target recognition based on deep CNNs / Zhongling Huang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
PermalinkA framework for extracting urban functional regions based on multiprototype word embeddings using points-of-interest data / Sheng Hu in Computers, Environment and Urban Systems, vol 80 (March 2020)
PermalinkComputer vision-based framework for extracting tectonic lineaments from optical remote sensing data / Ehsan Farahbakhsh in International Journal of Remote Sensing IJRS, vol 41 n°5 (01 - 08 février 2020)
PermalinkPhotogrammetric Bathymetry for the Canadian Arctic / Matus Hodul in Marine geodesy, Vol 43 n° 1 (janvier 2020)
PermalinkUso de QGIS en la teledetección, Vol. 2. QGIS y sus aplicaciones en la agricultura y la silvicultura / Nicolas Baghdadi (2020)
PermalinkUso de QGIS en la teledetección, Vol. 4. QGIS y sus aplicaciones en agua y en gestion del riego / Nicolas Baghdadi (2020)
PermalinkNew method for environmental monitoring in armed conflict zones: a case study of Syria / Samira Mobaied in Environmental Monitoring and Assessment, vol 191 n° 11 (November 2019)
PermalinkEvaluation of time-series SAR and optical images for the study of winter land-use / Julien Denize (2019)
PermalinkExploitation de séries temporelles d'images multi-sources pour la cartographie des surfaces en eau / Filsa Bioresita (2019)
PermalinkPermalink