Descripteur
Termes IGN > imagerie > image numérique > image optique > image spectrale
image spectraleVoir aussi |
Documents disponibles dans cette catégorie (24)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Histograms of oriented mosaic gradients for snapshot spectral image description / Lulu Chen in ISPRS Journal of photogrammetry and remote sensing, vol 183 (January 2022)
[article]
Titre : Histograms of oriented mosaic gradients for snapshot spectral image description Type de document : Article/Communication Auteurs : Lulu Chen, Auteur ; Yong-Qiang Zhao, Auteur ; Jonathan Cheung-Wai Chan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 79 - 93 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] capteur multibande
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtre spectral
[Termes IGN] histogramme
[Termes IGN] image proche infrarouge
[Termes IGN] image spectrale
[Termes IGN] mosaïque d'images
[Termes IGN] poursuite de cible
[Termes IGN] temps instantanéRésumé : (auteur) This paper presents a feature descriptor using Histogram of Oriented Mosaic Gradient (HOMG) that extracts spatial-spectral features directly from mosaic spectral images. Spectral imaging utilizes unique spectral signatures to distinguish objects of interest in the scene more discriminatively. Snapshot spectral cameras equipped with spectral filter arrays (SFAs) capture spectral videos in real time, making it possible to detect/track fast moving targets based on spectral imaging. How to effectively extract the spatial-spectral feature directly from the mosaic spectral images acquired by snapshot spectral cameras is a core issue for detection/tracking. So far, there is a lack of comprehensive and in-depth research on this issue. To this end, this paper proposed a new spatial-spectral feature extractor for mosaic spectral images. The proposed scheme finds two forms of SFA neighborhood (SFAN) to construct a feature extractor suitable for any SFA structure. Exploiting the spatial-spectral correlation in two SFANs, we design six mosaic spatial-spectral gradient operators to compute spatial-spectral gradient maps (SGMs). HOMG descriptors are constructed using the magnitude and orientation of SGMs. The effectiveness and generalizability of the proposed method have been verified with object tracking experiments. Compared to the state-of-the-art feature descriptors, HOMG ranked first on two datasets captured with snapshot spectral camera with different SFAs, achieving a gain of 3.9% and 5.9% in average success rate over the second-ranked feature. Numéro de notice : A2022-010 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.10.018 Date de publication en ligne : 12/11/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.10.018 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99058
in ISPRS Journal of photogrammetry and remote sensing > vol 183 (January 2022) . - pp 79 - 93[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022011 SL Revue Centre de documentation Revues en salle Disponible 081-2022013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Tree annotations in LiDAR data using point densities and convolutional neural networks / Ananya Gupta in IEEE Transactions on geoscience and remote sensing, vol 58 n° 2 (February 2020)
[article]
Titre : Tree annotations in LiDAR data using point densities and convolutional neural networks Type de document : Article/Communication Auteurs : Ananya Gupta, Auteur ; Jonathan Byrne, Auteur ; David Moloney, Auteur Année de publication : 2020 Article en page(s) : pp 971 - 981 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données lidar
[Termes IGN] Dublin (Irlande ; ville)
[Termes IGN] extraction d'arbres
[Termes IGN] image spectrale
[Termes IGN] Montréal (Québec)
[Termes IGN] segmentation
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] voxel
[Termes IGN] zone urbaineRésumé : (auteur) LiDAR provides highly accurate 3-D point clouds. However, data need to be manually labeled in order to provide subsequent useful information. Manual annotation of such data is time-consuming, tedious, and error prone, and hence, in this article, we present three automatic methods for annotating trees in LiDAR data. The first method requires high-density point clouds and uses certain LiDAR data attributes for the purpose of tree identification, achieving almost 90% accuracy. The second method uses a voxel-based 3-D convolutional neural network on low-density LiDAR data sets and is able to identify most large trees accurately but struggles with smaller ones due to the voxelization process. The third method is a scaled version of the PointNet++ method and works directly on outdoor point clouds and achieves an F score of 82.1% on the ISPRS benchmark data set, comparable to the state-of-the-art methods but with increased efficiency. Numéro de notice : A2020-095 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2942201 Date de publication en ligne : 11/10/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2942201 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94658
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 2 (February 2020) . - pp 971 - 981[article]An integrated framework for the spatio–temporal–spectral fusion of remote sensing images / Huanfeng Shen in IEEE Transactions on geoscience and remote sensing, vol 54 n° 12 (December 2016)
[article]
Titre : An integrated framework for the spatio–temporal–spectral fusion of remote sensing images Type de document : Article/Communication Auteurs : Huanfeng Shen, Auteur ; Xiangchao Meng, Auteur ; Liangpei Zhang, Auteur Année de publication : 2016 Article en page(s) : pp 7135 - 7148 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de fusion
[Termes IGN] données spatiotemporelles
[Termes IGN] fusion d'images
[Termes IGN] fusion de données multisource
[Termes IGN] image spectraleRésumé : (Auteur) Remote sensing satellite sensors feature a tradeoff between the spatial, temporal, and spectral resolutions. In this paper, we propose an integrated framework for the spatio-temporal-spectral fusion of remote sensing images. There are two main advantages of the proposed integrated fusion framework: it can accomplish different kinds of fusion tasks, such as multiview spatial fusion, spatio-spectral fusion, and spatio-temporal fusion, based on a single unified model, and it can achieve the integrated fusion of multisource observations to obtain high spatio-temporal-spectral resolution images, without limitations on the number of remote sensing sensors. The proposed integrated fusion framework was comprehensively tested and verified in a variety of image fusion experiments. In the experiments, a number of different remote sensing satellites were utilized, including IKONOS, the Enhanced Thematic Mapper Plus (ETM+), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Hyperspectral Digital Imagery Collection Experiment (HYDICE), and Système Pour l' Observation de la Terre-5 (SPOT-5). The experimental results confirm the effectiveness of the proposed method. Numéro de notice : A2016-926 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2596290 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2596290 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83332
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 12 (December 2016) . - pp 7135 - 7148[article]A novel MKL model of integrating LiDAR data and MSI for urban area classification / Yanfeng Gu in IEEE Transactions on geoscience and remote sensing, vol 53 n° 10 (October 2015)
[article]
Titre : A novel MKL model of integrating LiDAR data and MSI for urban area classification Type de document : Article/Communication Auteurs : Yanfeng Gu, Auteur ; Qingwang Wang, Auteur ; Xiuping Jia, Auteur ; Jón Alti, Auteur Année de publication : 2015 Article en page(s) : pp 5312 - 5326 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage automatique
[Termes IGN] classificateur
[Termes IGN] classification à base de connaissances
[Termes IGN] classification automatique
[Termes IGN] données lidar
[Termes IGN] image multibande
[Termes IGN] image spectrale
[Termes IGN] milieu urbainRésumé : (Auteur) A novel multiple-kernel learning (MKL) model is proposed for urban classification to integrate heterogeneous features (HF-MKL) from two data sources, i.e., spectral images and LiDAR data. The features include spectral, spatial, and elevation attributes of urban objects from the two data sources. With these heterogeneous features (HFs), the new MKL model is designed to carry out feature fusion that is embedded in classification. First, Gaussian kernels with different bandwidths are used to measure the similarity of samples on each feature at different scales. Then, these multiscale kernels with different features are integrated using a linear combination. In the combination, the weights of the kernels with different features are determined by finding a projection based on the maximum variance. This way, the discriminative ability of the HFs is exploited at different scales and is also integrated to generate an optimal combined kernel. Finally, the optimization of the conventional support vector machine with this kernel is performed to construct a more effective classifier. Experiments are conducted on two real data sets, and the experimental results show that the HF-MKL model achieves the best performance in terms of classification accuracies in integrating the HFs for classification when compared with several state-of-the-art algorithms. Numéro de notice : A2015-752 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2421051 Date de publication en ligne : 07/05/2015 En ligne : https://doi.org/10.1109/TGRS.2015.2421051 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78742
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 10 (October 2015) . - pp 5312 - 5326[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015101 SL Revue Centre de documentation Revues en salle Disponible Remote sensing image segmentation by combining spectral and texture features / H. Li in IEEE Transactions on geoscience and remote sensing, vol 52 n° 1 tome 1 (January 2014)
[article]
Titre : Remote sensing image segmentation by combining spectral and texture features Type de document : Article/Communication Auteurs : H. Li, Auteur Année de publication : 2014 Article en page(s) : pp 16 - 16 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse combinatoire (maths)
[Termes IGN] appariement d'histogramme
[Termes IGN] image spectrale
[Termes IGN] segmentation d'image
[Termes IGN] texture d'image
[Termes IGN] valeur radiométriqueRésumé : (Auteur) We present a new method for remote sensing image segmentation, which utilizes both spectral and texture information. Linear filters are used to provide enhanced spatial patterns. For each pixel location, we compute combined spectral and texture features using local spectral histograms, which concatenate local histograms of all input bands. We regard each feature as a linear combination of several representative features, each of which corresponds to a segment. Segmentation is given by estimating combination weights, which indicate segment ownership of pixels. We present segmentation solutions where representative features are either known or unknown. We also show that feature dimensions can be greatly reduced via subspace projection. The scale issue is investigated, and an algorithm is presented to automatically select proper scales, which does not require segmentation at multiple-scale levels. Experimental results demonstrate the promise of the proposed method. Numéro de notice : A2014-034 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2012.2234755 En ligne : https://doi.org/10.1109/TGRS.2012.2234755 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32939
in IEEE Transactions on geoscience and remote sensing > vol 52 n° 1 tome 1 (January 2014) . - pp 16 - 16[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2014011A RAB Revue Centre de documentation En réserve L003 Disponible PermalinkEstimating atmospheric transmission and surface reflectance from a glint-contaminated spectral image / W. Philpot in IEEE Transactions on geoscience and remote sensing, vol 45 n° 2 (February 2007)PermalinkMERIS in-flight spectral calibration / S. Delwart in International Journal of Remote Sensing IJRS, vol 28 n°3-4 (February 2007)PermalinkEstimation of local forest attributes, utilizing two-phase sampling and auxiliary data / Sakari Tuominen (2007)PermalinkLe symposium de l'ISPRS / Anonyme in Géomatique expert, n° 51 (01/06/2006)PermalinkSpatially adaptative multi-resolution multispectral image fusion / J.H. Park in International Journal of Remote Sensing IJRS, vol 25 n° 23 (December 2004)PermalinkIntérêt de la fusion d'images à haute résolution spatiale pour la classification de l'occupation du sol en milieu urbain / Yves Cornet in Revue internationale de géomatique, vol 14 n° 3 - 4 (septembre 2004 – février 2005)PermalinkPrincipal-components-based display strategy for spectral imagery / J.S. Tyo in IEEE Transactions on geoscience and remote sensing, vol 41 n° 3 (March 2003)PermalinkReconnaissance de formes dans des images de télédétection du milieu urbain / Isabelle Couloigner (1998)PermalinkAn adaptive noise smoothing filter for remotely-sensed images with microphonic noise / S. Cheng in International Journal of Remote Sensing IJRS, vol 10 n° 6 (June 1989)Permalink