Descripteur
Termes IGN > imagerie > image spatiale > image satellite > image SPOT > image SPOT 5
image SPOT 5Voir aussi |
Documents disponibles dans cette catégorie (119)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Geomorphic analysis of Xiadian buried fault zone in Eastern Beijing plain based on SPOT image and unmanned aerial vehicle (UAV) data / Yanping Wang in Geomatics, Natural Hazards and Risk, vol 12 n° 1 (2021)
[article]
Titre : Geomorphic analysis of Xiadian buried fault zone in Eastern Beijing plain based on SPOT image and unmanned aerial vehicle (UAV) data Type de document : Article/Communication Auteurs : Yanping Wang, Auteur ; Pinliang Dong, Auteur ; Yueqin Zhu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 261 - 278 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] auscultation topographique
[Termes IGN] déformation de la croute terrestre
[Termes IGN] données de terrain
[Termes IGN] effondrement de terrain
[Termes IGN] faille géologique
[Termes IGN] géomorphologie locale
[Termes IGN] image captée par drone
[Termes IGN] image SPOT 5
[Termes IGN] MNS SRTM
[Termes IGN] modèle numérique de surface
[Termes IGN] Pékin (Chine)
[Termes IGN] réseau de drainage
[Termes IGN] zone à risqueRésumé : (auteur) This study presents geomorphic analysis of Xiadian buried fault in eastern Beijing plain (China), based on the analysis of a Satellite Pour l’Observation de la Terre (SPOT-5) image, a high-resolution digital elevation model (DEM) derived from an unmanned aerial vehicle (UAV) system, SRTM DEM and field investigation. Interpretations of the SPOT-5 image show that the pits always distribute between fault scarp segments or shallow grooves. The geomorphic features near the fault show echelon arrangements caused by dextral strike-slip activities of the fault. Based on this, the characteristics of stress field in this area have been clearly inferred. At centimeter-level accuracy, UAV-derived DEM profiles can clearly show micro tectonic landforms such as fault scarps, shallow grooves, steep slopes, and pits. Combined with previous research and field measurements, the evolution rates in length and height of the fault scarps are analysed. Furthermore, the deflection analysis of the drainage system also shows the characteristics of the continuous strike slip activity of the Xiadian fault. The study can provide valuable insight into geomorphic analysis of buried and semi-buried active faults in plain areas with increasingly frequent human activities. Numéro de notice : A2021-108 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475705.2020.1870168 Date de publication en ligne : 19/01/2021 En ligne : https://doi.org/10.1080/19475705.2020.1870168 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96905
in Geomatics, Natural Hazards and Risk > vol 12 n° 1 (2021) . - pp 261 - 278[article]A worldwide 3D GCP database inherited from 20 years of massive multi-satellite observations / Laure Chandelier in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)
[article]
Titre : A worldwide 3D GCP database inherited from 20 years of massive multi-satellite observations Type de document : Article/Communication Auteurs : Laure Chandelier , Auteur ; Laurent Coeurdevey, Auteur ; Sébastien Bosch, Auteur ; Pascal Favé, Auteur ; Roland Gachet, Auteur ; Alain Orsoni , Auteur ; Thomas Tilak , Auteur ; Alexis Barot, Auteur Année de publication : 2020 Projets : 1-Pas de projet / Conférence : ISPRS 2020, Commission 2, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 2 Article en page(s) : pp 15 - 23 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] base de données d'images
[Termes IGN] compensation par bloc
[Termes IGN] données localisées de référence
[Termes IGN] formatage
[Termes IGN] image à très haute résolution
[Termes IGN] image multi sources
[Termes IGN] image satellite
[Termes IGN] image SPOT 6
[Termes IGN] image SPOT 7
[Termes IGN] image SPOT-HRS
[Termes IGN] informatique en nuage
[Termes IGN] Institut national de l'information géographique et forestière (France)
[Termes IGN] point d'appui
[Termes IGN] spatiotriangulationRésumé : (auteur) High location accuracy is a major requirement for satellite image users. Target performance is usually achieved thanks to either specific on-board satellite equipment or an auxiliary registration reference dataset. Both methods may be expensive and with certain limitations in terms of performance. The Institut national de l’information géographique et forestière (IGN) and Airbus Defence and Space (ADS) have worked together for almost 20 years, to build reference data for improving image location using multi-satellite observations. The first geometric foundation created has mainly used SPOT 5 High Resolution Stereoscopic (HRS) imagery, ancillary Ground Control Points (GCP) and Very High Resolution (VHR) imagery, providing a homogenous location accuracy of 10m CE90 almost all over the world in 2010. Space Reference Points (SRP) is a new worldwide 3D GCP database, built from a plethoric SPOT 6/7 multi-view archive, largely automatically processed, with cloud-based technologies. SRP aims at providing a systematic and reliable solution for image location (Unmanned Aerial Vehicle, VHR satellite imagery, High Altitudes Pseudo-Satellite…) and similar topics thanks to a high-density point distribution with a 3m CE90 accuracy. This paper describes the principle of SRP generation and presents the first validation results. A SPOT 6/7 smart image selection is performed to keep only relevant images for SRP purpose. The location of these SPOT 6/7 images is refined thanks to a spatiotriangulation on the worldwide geometric foundation, itself improved where needed. Points making up the future SRP database are afterward extracted thanks to classical feature detection algorithms and with respect to the expected density. Different filtering methods are applied to keep the best candidates. The last step of the processing chain is the formatting of the data to the delivery format, including metadata. An example of validation of SRP concept and specification on two tests sites (Spain and China) is then given. As a conclusion, the on-going production is shortly presented. Numéro de notice : A2020-474 Affiliation des auteurs : IGN+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2020-15-2020 Date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2020-15-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95613
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2020 (August 2020) . - pp 15 - 23[article]Unsupervised satellite image time series analysis using deep learning techniques / Ekaterina Kalinicheva (2020)
Titre : Unsupervised satellite image time series analysis using deep learning techniques Type de document : Thèse/HDR Auteurs : Ekaterina Kalinicheva , Auteur ; Maria Trocan, Directeur de thèse Editeur : Paris : Sorbonne Université Année de publication : 2020 Importance : 182 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse pour obtenir le doctorat de la Sorbonne Université, Spécialité InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage non-dirigé
[Termes IGN] détection de changement
[Termes IGN] données spatiotemporelles
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 5
[Termes IGN] réseau neuronal profond
[Termes IGN] réseau neuronal récurrent
[Termes IGN] série temporelle
[Termes IGN] variation saisonnièreIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Cette thèse présente un ensemble d'algorithmes non-supervisés pour l'analyse générique de séries temporelles d'images satellites (STIS). Nos algorithmes exploitent des méthodes de machine learning et, notamment, les réseaux de neurones afin de détecter les différentes entités spatio-temporelles et leurs changements éventuels dans le temps. Nous visons à identifier trois types de comportement temporel : les zones sans changements, les changements saisonniers, les changements non triviaux (changements permanents comme les constructions, la rotation des cultures agricoles, etc). Par conséquent, nous proposons deux frameworks : pour la détection et le clustering des changements non-triviaux et pour le clustering des changements saisonniers et des zones sans changements. Le premier framework est composé de deux étapes : la détection de changements bi-temporels et leur interprétation dans le contexte multi-temporel avec une approche basée graphes. La détection de changements bi-temporels est faite pour chaque couple d’images consécutives et basée sur la transformation des features avec les autoencodeurs (AEs). A l’étape suivante, les changements à différentes dates qui appartiennent à la même zone géographique forment les graphes d’évolution qui sont par la suite clusterisés avec un modèle AE de réseaux de neurones récurrents. Le deuxième framework présente le clustering basé objets de STIS. Premièrement, la STIS est encodée en image unique avec un AE convolutif 3D multi-vue. Dans un deuxième temps, nous faisons la segmentation en deux étapes en utilisant à la fois l’image encodée et la STIS. Finalement, les segments obtenus sont clusterisés avec leurs descripteurs encodés. Note de contenu : 1. Introduction to Remote Sensing and Satellite Image Analysis
1.1 Introduction
1.2 Remote Sensing Images
1.3 Satellite Missions
1.4 Introduction to Data Mining Applied to Images
2. Machine Learning. Clustering and Anomaly Detection
2.1 Introduction
2.2 Unsupervised Learning
2.3 Clustering
2.4 Anomaly Detection
2.5 Quality Indices
2.6 Discussion
3. Feature Extraction using Deep Learning Techniques
3.1 Introduction
3.2 Deep Learning
3.3 AutoEncoders in Image Processing
3.4 Neural Networks Structure
3.5 Discussion
4. Bi-temporal Change Detection
4.1 Introduction
4.2 Related Works
4.3 Methodology
4.4 Data
4.5 Experiments
4.6 Discussion
5. Multi-temporal Change Detection
5.1 Introduction
5.2 Related Works
5.3 Methodology
5.4 Data
5.5 Experiments
5.6 Conclusion
6. Satellite Image Time Series Clustering
6.1 Introduction
6.2 Related Works
6.3 Methodology
6.4 Data
6.5 Experiments
6.6 Discussion
7. Conclusion
7.1 Thesis Contributions
7.2 Short Term Perspectives
7.3 Long Term Perspectives and LimitationsNuméro de notice : 26536 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Sorbonne université : 2020 Organisme de stage : ISEP Institut Supérieur d'Electronique de Paris nature-HAL : Thèse DOI : sans Date de publication en ligne : 01/03/2021 En ligne : https://tel.archives-ouvertes.fr/tel-03032071/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97681 A new stochastic simulation algorithm for image-based classification : Feature-space indicator simulation / Qing Wang in ISPRS Journal of photogrammetry and remote sensing, vol 152 (June 2019)
[article]
Titre : A new stochastic simulation algorithm for image-based classification : Feature-space indicator simulation Type de document : Article/Communication Auteurs : Qing Wang, Auteur ; Hua Sun, Auteur ; Ruopu Li, Auteur ; Guangxing Wang, Auteur Année de publication : 2019 Article en page(s) : pp 145 - 165 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] forêt
[Termes IGN] géostatistique
[Termes IGN] image Landsat-OLI
[Termes IGN] image SPOT 5
[Termes IGN] Mongolie intérieure (Chine)
[Termes IGN] occupation du sol
[Termes IGN] précision de la classification
[Termes IGN] utilisation du sol
[Termes IGN] variogrammeRésumé : (Auteur) Traditional parametric methods for classification of land use and land cover (LULC) types using remote sensing imagery assume a global distribution model and fail to consider local variation of categorical variables. Differently, non-parametric methods do not make any statistical assumptions but are typically sensitive to the sample sizes of training sample data that usually require a high cost to collect in the field. Geostatistical classifiers, such as indicator kriging and simulation, are local variability-based methods that exhibit great potential for image-based classification of LULC types. However, variogram models required are highly sensitive to the spatial configuration of training samples as well as sample size given a study area. Moreover, when a large number of spectral variables are considered into kriging systems, modeling the variograms and cross-variograms would be problematic. To circumvent these issues, this study extended the geostatistical methods from a 2-dimensional geographic space to a m-dimensional image feature space to derive feature-space indicator variograms (FSIVs). Moreover, a novel stochastic simulation classification algorithm, Feature-Space Indicator Simulation (FSIS), was proposed and examined for classification of LULC types in Duolun County located in Inner Mongolia and in Huang-Feng-Qiao (HFQ) forest farm, Hunan of China. In Duolun, six LULC types were involved and in HFQ a complicated forest landscape consisting of nine forest types plus water, built-up area, and agricultural/bare soil, was classified. The classification results of FSIS were compared with another feature-space geostatistical classifier – feature-space indicator kriging (FSIK), a traditional parametric method – maximum likelihood (ML), a widely used nonparametric method – support vector machine (SVM), and a recently popular method – random forest (RF). The results showed that compared with ML, SVM and RF, in both study areas FSIS statistically significantly increased the accuracy of the classifications by 10.0–29.9% for percentage correct and 19.0–47.6% for Kappa statistic. Compared with FSIK, FSIS also improved the classification accuracy but the accuracy increases were relatively smaller with the percentages correct of 3.5% and 7.6% and the Kappa values of 4.6% and 8.6% for Duolun and HFQ, respectively. Moreover, FSIS led to the spatial uncertainties of the classification estimates as the quality measure of the estimates. In addition, the results also demonstrated that FSIVs were sensitive to the within-class heterogeneity but not very much to the size of training samples. Overall, FSIS exhibited the greater potential to improve the classification accuracy of LULC and forest types using remote sensing image. Numéro de notice : A2019-457 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.04.011 Date de publication en ligne : 25/04/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.04.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92871
in ISPRS Journal of photogrammetry and remote sensing > vol 152 (June 2019) . - pp 145 - 165[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019061 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019063 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Object-based crop classification using multi-temporal SPOT-5 imagery and textural features with a Random Forest classifier / Huanxue Zhang in Geocarto international, vol 33 n° 10 (October 2018)
[article]
Titre : Object-based crop classification using multi-temporal SPOT-5 imagery and textural features with a Random Forest classifier Type de document : Article/Communication Auteurs : Huanxue Zhang, Auteur ; Qiangzi Li, Auteur ; Jiangui Liu, Auteur ; Taifeng Dong, Auteur ; Heather McNairn, Auteur Année de publication : 2018 Article en page(s) : pp 1017 - 1035 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] bande spectrale
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] corrélation par régions de niveaux de gris
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image SPOT 5
[Termes IGN] indice de végétation
[Termes IGN] limite de terrain
[Termes IGN] Ontario (Canada)
[Termes IGN] réflectance spectrale
[Termes IGN] segmentation d'image
[Termes IGN] surface cultivée
[Termes IGN] surveillance agricole
[Termes IGN] texture d'image
[Termes IGN] variogrammeRésumé : (auteur) In this study, an object-based image analysis (OBIA) approach was developed to classify field crops using multi-temporal SPOT-5 images with a random forest (RF) classifier. A wide range of features, including the spectral reflectance, vegetation indices (VIs), textural features based on the grey-level co-occurrence matrix (GLCM) and textural features based on geostatistical semivariogram (GST) were extracted for classification, and their performance was evaluated with the RF variable importance measures. Results showed that the best segmentation quality was achieved using the SPOT image acquired in September, with a scale parameter of 40. The spectral reflectance and the GST had a stronger contribution to crop classification than the VIs and GLCM textures. A subset of 60 features was selected using the RF-based feature selection (FS) method, and in this subset, the near-infrared reflectance and the image acquired in August (jointing and heading stages) were found to be the best for crop classification. Numéro de notice : A2019-049 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2017.1333533 Date de publication en ligne : 23/06/2017 En ligne : https://doi.org/10.1080/10106049.2017.1333533 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92063
in Geocarto international > vol 33 n° 10 (October 2018) . - pp 1017 - 1035[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2018041 RAB Revue Centre de documentation En réserve L003 Disponible Predicting tree diameter distributions from airborne laser scanning, SPOT 5 satellite, and field sample data in the perm region, Russia / Jussi Peuhkurinen in Forests, vol 9 n° 10 (October 2018)PermalinkAssessment of Nigeriasat-1 satellite data for urban land use/land cover analysis using object-based image analysis in Abuja, Nigeria / Christopher Ifechukwude Chima in Geocarto international, vol 33 n° 9 (September 2018)PermalinkStand-volume estimation from multi-source data for coppiced and high forest Eucalyptus spp. silvicultural systems in KwaZulu-Natal, South Africa / Timothy Dube in ISPRS Journal of photogrammetry and remote sensing, vol 132 (October 2017)PermalinkA Stepwise-Then-Orthogonal Regression (STOR) with quality control for optimizing the RFM of high-resolution satellite imagery / Chang Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 9 (September 2017)PermalinkMonitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms / Lien T.H. Pham in ISPRS Journal of photogrammetry and remote sensing, vol 128 (June 2017)PermalinkDistinctive order based self-similarity descriptor for multi-sensor remote sensing image matching / Amin Sedaghat in ISPRS Journal of photogrammetry and remote sensing, vol 108 (October 2015)PermalinkCartographie du châtaignier en Alsace par imagerie satellite multi-date / Colette Meyer in Revue Française de Photogrammétrie et de Télédétection, n° 211 - 212 (juillet - décembre 2015)PermalinkImproving the spatial resolution of landsat TM/ETM+ through fusion with SPOT5 images via learning-based super-resolution / Huihui Song in IEEE Transactions on geoscience and remote sensing, vol 53 n° 3 (March 2015)PermalinkEtude de l'évolution de l'utilisation du sol dans le district Sunsari (plaine du Népal) depuis les années 1950 / Mathilde Dumont-Aublin (2015)PermalinkEtude expérimentale en cartographie de la végétation par télédétection / Vanessa Sellin in Cybergeo, European journal of geography, n° 2015 ([01/01/2015])Permalink