Descripteur
Termes IGN > 1- Descripteurs géographiques > monde (géographie politique) > Asie (géographie politique) > Inde > Tamil Nadu (Inde ; état)
Tamil Nadu (Inde ; état) |
Documents disponibles dans cette catégorie (2)



Etendre la recherche sur niveau(x) vers le bas
Assessment and prediction of urban growth for a mega-city using CA-Markov model / Veerendra Yadav in Geocarto international, vol 36 n° 17 ([15/09/2021])
![]()
[article]
Titre : Assessment and prediction of urban growth for a mega-city using CA-Markov model Type de document : Article/Communication Auteurs : Veerendra Yadav, Auteur ; Sanjay Kumar Ghosh, Auteur Année de publication : 2021 Article en page(s) : pp 1960 - 1992 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] coefficient de corrélation
[Termes IGN] croissance urbaine
[Termes IGN] mégalopole
[Termes IGN] modèle de Markov
[Termes IGN] modèle de simulation
[Termes IGN] OpenStreetMap
[Termes IGN] Tamil Nadu (Inde ; état)
[Termes IGN] urbanisationRésumé : (auteur) Most of World’s mega-cities are facing high population growth. To accommodate the increased population, new built-up areas are emerging at the periphery or fringe area of cities. New urbanisation has an adverse impact on the existing Land Use Land Cover (LULC). To monitor and analyse the impact of urbanisation, LULC change analysis has become the primary concern for LULC monitoring agencies. In this study, LULC change of Chennai has been assessed during 1981–2011 using temporal Landsat data. All the dataset has been classified using Maximum Likelihood Classifier (MLC). Quantitative change in LULC has been carried out using Pearson’s Correlation Coefficient, Transition Potential Matrix, Land Use Dynamic Degree and MLC. Further, spatio-temporal change analysis has been performed using Post-classification comparison technique. Cellular Automata-Markov (CA-Markov) Model used for LULC prediction for 2021–2051. The urban area of Chennai has increased from 40.74 to 103.52 km2 during 1981–2011. Further, LULC prediction using the CA-Markov model shows that the urban area of Chennai district may increase from 103.52 to 140.79 km2 during 2011–2051. During the period 1981–2051, the prediction model indicates that mostly vegetation and barren land will be converted into urban land class. Numéro de notice : A2021-692 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2019.1690054 Date de publication en ligne : 14/11/2019 En ligne : https://doi.org/10.1080/10106049.2019.1690054 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98507
in Geocarto international > vol 36 n° 17 [15/09/2021] . - pp 1960 - 1992[article]Dynamics of coastal landform features along the southern Tamil Nadu of India by using remote sensing and Geographic Information System / P. Mujabar in Geocarto international, vol 27 n° 4 (July 2012)
![]()
[article]
Titre : Dynamics of coastal landform features along the southern Tamil Nadu of India by using remote sensing and Geographic Information System Type de document : Article/Communication Auteurs : P. Mujabar, Auteur ; N. Chandrasekar, Auteur Année de publication : 2012 Article en page(s) : pp 347 - 370 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] détection de changement
[Termes IGN] érosion anthropique
[Termes IGN] érosion côtière
[Termes IGN] image IRS
[Termes IGN] littoral
[Termes IGN] Tamil Nadu (Inde ; état)Résumé : (Auteur) This article reveals an application of multi-spectral satellite data for analysing the dynamics of different coastal landform features along the southern coastal Tamil Nadu of India. An integrated approach comprising visual image interpretation and maximum-likelihood supervised classification has been employed to classify the coastal landforms by using IRS data (during the period 1999–2006). The quality of image classification has been assessed by performing the accuracy assessments with the existing thematic maps and finally the coastal landforms have been mapped. The study reveals that the dynamics of coastal landforms such as sandy beaches, mud-flats, sand dunes and salt marshes along the study area are mostly influenced by the coastal processes, sediment transport, geomorphology and anthropogenic activities. Major anthropogenic sources for the perturbation of beach sediment budgets and a cause of beach erosion along the study area are excessive sand mining, removal of sand dunes, coastal urbanization, tourism and developmental activities. Numéro de notice : A2012-335 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2011.638988 Date de publication en ligne : 06/01/2012 En ligne : https://doi.org/10.1080/10106049.2011.638988 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31781
in Geocarto international > vol 27 n° 4 (July 2012) . - pp 347 - 370[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2012041 RAB Revue Centre de documentation En réserve 3L Disponible