Descripteur
Termes IGN > télédétection > télédétection électromagnétique > indice de végétation > Normalized Difference Vegetation Index
Normalized Difference Vegetation IndexSynonyme(s)NDVI |
Documents disponibles dans cette catégorie (241)



Etendre la recherche sur niveau(x) vers le bas
Crop type identification and spatial mapping using Sentinel-2 satellite data with focus on field-level information / Murali Krishna Gumma in Geocarto international, vol 37 n° 7 ([15/06/2022])
![]()
[article]
Titre : Crop type identification and spatial mapping using Sentinel-2 satellite data with focus on field-level information Type de document : Article/Communication Auteurs : Murali Krishna Gumma, Auteur ; Kimeera Tummala, Auteur ; Sreenath Dixit, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1833 - 1849 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] appariement spectral
[Termes IGN] blé (céréale)
[Termes IGN] carte de la végétation
[Termes IGN] distribution spatiale
[Termes IGN] image Sentinel-MSI
[Termes IGN] Inde
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] série temporelle
[Termes IGN] surface cultivée
[Termes IGN] variation saisonnièreRésumé : (auteur) Accurate monitoring of croplands helps in making decisions (for insurance claims, crop management and contingency plans) at the macro-level, especially in drylands where variability in cropping is very high owing to erratic weather conditions. Dryland cereals and grain legumes are key to ensuring the food and nutritional security of a large number of vulnerable populations living in the drylands. Reliable information on area cultivated to such crops forms part of the national accounting of food production and supply in many Asian countries, many of which are employing remote sensing tools to improve the accuracy of assessments of cultivated areas. This paper assesses the capabilities and limitations of mapping cultivated areas in the Rabi (winter) season and corresponding cropping patterns in three districts characterized by small-plot agriculture. The study used Sentinel-2 Normalized Difference Vegetation Index (NDVI) 15-day time-series at 10 m resolution by employing a Spectral Matching Technique (SMT) approach. The use of SMT is based on the well-studied relationship between temporal NDVI signatures and crop phenology. The rabi season in India, dominated by non-rainy days, is best suited for the application of this method, as persistent cloud cover will hamper the availability of images necessary to generate clearly differentiating temporal signatures. Our study showed that the temporal signatures of wheat, chickpea and mustard are easily distinguishable, enabling an overall accuracy of 84%, with wheat and mustard achieving 86% and 94% accuracies, respectively. The most significant misclassifications were in irrigated areas for mustard and wheat, in small-plot mustard fields covered by trees and in fragmented chickpea areas. A comparison of district-wise national crop statistics and those obtained from this study revealed a correlation of 96%. Numéro de notice : A2022-497 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1805029 Date de publication en ligne : 18/08/2020 En ligne : https://doi.org/10.1080/10106049.2020.1805029 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100989
in Geocarto international > vol 37 n° 7 [15/06/2022] . - pp 1833 - 1849[article]Detecting and mapping drought severity using multi-temporal Landsat data in the uMsinga region of KwaZulu-Natal, South Africa / Shenelle Lottering in Geocarto international, vol 37 n° 6 (June 2022)
![]()
[article]
Titre : Detecting and mapping drought severity using multi-temporal Landsat data in the uMsinga region of KwaZulu-Natal, South Africa Type de document : Article/Communication Auteurs : Shenelle Lottering, Auteur ; Paramu Mafongoyab, Auteur ; Romano Lottering, Auteur Année de publication : 2022 Article en page(s) : pp 1574 - 1586 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Afrique du sud (état)
[Termes IGN] cartographie thématique
[Termes IGN] données météorologiques
[Termes IGN] données multitemporelles
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-TM
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] sécheresse
[Termes IGN] stress hydrique
[Termes IGN] température au solRésumé : (auteur) Drought has become a more frequent phenomenon under changing climatic conditions, particularly in Sub Saharan Africa. This study tested the utility of a newly proposed Temperature-Vegetation Water Stress Index (T-VWSI) in detecting drought severity using Landsat data for the years 2008, 2012, 2016 and 2018. This index was created using both NDVI and LST to detect drought severity within the region. The results show that the year 2016 experienced the most severe levels of drought, with the northern areas of the uMsinga region being most severely affected. SPI was used to corroborate the findings of the T-VWSI index and also established that the year 2016 was the year of severe drought in uMsinga. The results of this study have illustrated the potential of the T-VWSI index in effectively mapping and detecting drought over large spatial areas. Numéro de notice : A2022-473 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1783580 Date de publication en ligne : 08/07/2020 En ligne : https://doi.org/10.1080/10106049.2020.1783580 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100820
in Geocarto international > vol 37 n° 6 (June 2022) . - pp 1574 - 1586[article]The interrelationship between LST, NDVI, NDBI, and land cover change in a section of Lagos metropolis, Nigeria / Alfred S. Alademomi in Applied geomatics, vol 14 n° 2 (June 2022)
![]()
[article]
Titre : The interrelationship between LST, NDVI, NDBI, and land cover change in a section of Lagos metropolis, Nigeria Type de document : Article/Communication Auteurs : Alfred S. Alademomi, Auteur ; Chukwuma J. Okolie, Auteur ; Olagoke E. Daramola, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 299 - 314 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] corrélation temporelle
[Termes IGN] détection de changement
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-TM
[Termes IGN] Lagos
[Termes IGN] Normalized Difference Built-up Index
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] occupation du sol
[Termes IGN] température au solRésumé : (auteur) In recent times, there has been renewed interest in understanding the dynamics of land cover change and its relationship with several environmental parameters. This study assesses the interrelationship between land surface temperature (LST), normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), and land cover change in Amuwo-Odofin Local Government Area of Lagos State, Nigeria. Multi-temporal and multi-spectral Landsat imageries for years 2002, 2013, 2016, and 2019 served as the primary dataset. Using the parallelepiped classifier, the imageries were classified into five land cover classes — mixed vegetation, bare land, built-up area, water body, and wetland. The spectral indices (NDVI and NDBI) were computed and the LST was determined using a single-channel algorithm. Land cover transition matrices were calculated to examine the proportion of land cover change between classes, including the unchanged areas. Pearson’s correlation analysis enabled an analysis of the interdependence or interrelationship in the distribution of the parameters. From 2002 to 2019, the highest land cover transitions recorded were bare land to built-up area (12.64 km2), mixed vegetation to built-up area (21.55 km2), wetland to mixed vegetation (8.87 km2), and mixed vegetation to bare land (8.46 km2). There was a negative correlation between LST and NDVI, and between NDVI and NDBI. The distribution of the LST, NDVI, and NDBI varied correspondingly in accordance with land cover changes. The increase in built-up area could be the major driver of the observed changes in LST, NDBI, and NDVI, with an observed relationship that NDBI and LST values increase with increase in built-up areas. Numéro de notice : A2022-463 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1007/s12518-022-00434-2 Date de publication en ligne : 06/04/2022 En ligne : https://doi.org/10.1007/s12518-022-00434-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100790
in Applied geomatics > vol 14 n° 2 (June 2022) . - pp 299 - 314[article]A continuous change tracker model for remote sensing time series reconstruction / Yangjian Zhang in Remote sensing, vol 14 n° 9 (May-1 2022)
![]()
[article]
Titre : A continuous change tracker model for remote sensing time series reconstruction Type de document : Article/Communication Auteurs : Yangjian Zhang, Auteur ; Li Wang, Auteur ; Yuanhuizi He, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2280 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de filtrage
[Termes IGN] analyse harmonique
[Termes IGN] compression d'image
[Termes IGN] détection de changement
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] Leaf Area Index
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] phénologie
[Termes IGN] production primaire brute
[Termes IGN] reconstruction d'image
[Termes IGN] réflectance de surface
[Termes IGN] série temporelleRésumé : (auteur) It is hard for current time series reconstruction methods to achieve the balance of high-precision time series reconstruction and explanation of the model mechanism. The goal of this paper is to improve the reconstruction accuracy with a well-explained time series model. Thus, we developed a function-based model, the CCTM (Continuous Change Tracker Model) model, that can achieve high precision in time series reconstruction by tracking the time series variation rate. The goal of this paper is to provide a new solution for high-precision time series reconstruction and related applications. To test the reconstruction effects, the model was applied to four types of datasets: normalized difference vegetation index (NDVI), gross primary productivity (GPP), leaf area index (LAI), and MODIS surface reflectance (MSR). Several new observations are as follows. First, the CCTM model is well explained and based on the second-order derivative theorem, which divides the yearly time series into four variation types including uniform variations, decelerated variations, accelerated variations, and short-periodical variations, and each variation type is represented by a designed function. Second, the CCTM model provides much better reconstruction results than the Harmonic model on the NDVI, GPP, MSR, and LAI datasets for the seasonal segment reconstruction. The combined use of the Savitzky–Golay filter and the CCTM model is better than the combinations of the Savitzky–Golay filter with other models. Third, the Harmonic model has the best trend-fitting ability on the yearly time series dataset, with the highest R-Square and the lowest RMSE among the four function fitting models. However, with seasonal piecewise fitting, the four models all achieved high accuracy, and the CCTM performs the best. Fourth, the CCTM model should also be applied to time series image compression, two compression patterns with 24 coefficients and 6 coefficients respectively are proposed. The daily MSR dataset can achieve a compression ratio of 15 by using the 6-coefficients method. Finally, the CCTM model also has the potential to be applied to change detection, trend analysis, and phenology and seasonal characteristics extractions. Numéro de notice : A2022-384 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14092280 Date de publication en ligne : 09/05/2022 En ligne : https://doi.org/10.3390/rs14092280 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100662
in Remote sensing > vol 14 n° 9 (May-1 2022) . - n° 2280[article]Comparaison des images satellite et aériennes dans le domaine de la détection d’obstacles à la navigation aérienne et de leur mise à jour / Olivier de Joinville in XYZ, n° 170 (mars 2022)
[article]
Titre : Comparaison des images satellite et aériennes dans le domaine de la détection d’obstacles à la navigation aérienne et de leur mise à jour Type de document : Article/Communication Auteurs : Olivier de Joinville , Auteur ; Chloé Marcon, Auteur
Année de publication : 2022 Article en page(s) : pp 36 - 44 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] aéroport
[Termes IGN] analyse comparative
[Termes IGN] analyse diachronique
[Termes IGN] BD Topo
[Termes IGN] classification dirigée
[Termes IGN] classification orientée objet
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification pixellaire
[Termes IGN] contrôle qualité
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] extraction de la végétation
[Termes IGN] image Pléiades-HR
[Termes IGN] image Sentinel-MSI
[Termes IGN] mise à jour de base de données
[Termes IGN] modèle numérique de surface
[Termes IGN] Nice
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] orthoimage
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] QGIS
[Termes IGN] réalité de terrainRésumé : (Auteur) Le Service d’information aéronautique (SIA) est un service de la DGAC (Direction générale de l’aviation civile) qui publie et exploite des obstacles à la navigation aérienne afin de sécuriser les vols aux abords des aérodromes. L’article propose une étude comparative entre des données images aériennes (OrthoImages) et des données images satellite (Pléiades et Sentinel) dans les deux domaines suivants : détection d’obstacles (essentiellement végétation et bâtiments) ainsi que leur mise à jour. Il ressort que les images satellite, du fait de leur forte qualité radiométrique et géométrique, offrent un potentiel légèrement supérieur aux images aériennes pour le SIA. De futures études utilisant d’autres capteurs optiques, LiDAR et Radar et des moyens de contrôle plus exhaustifs, devront être menées pour confirmer cette tendance. Numéro de notice : A2022-225 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100191
in XYZ > n° 170 (mars 2022) . - pp 36 - 44[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 112-2022011 SL Revue Centre de documentation Revues en salle En circulation
Exclu du prêt112-2022012 SL Revue Centre de documentation Revues en salle Disponible Spatiotemporal fusion modelling using STARFM: Examples of Landsat 8 and Sentinel-2 NDVI in Bavaria / Maninder Singh Dhillon in Remote sensing, vol 14 n° 3 (February-1 2022)
PermalinkMulti-temporal remote sensing data to monitor terrestrial ecosystem responses to climate variations in Ghana / Ram Avtar in Geocarto international, vol 37 n° 2 ([15/01/2022])
PermalinkSoil erosion estimation of Bhandara region of Maharashtra, India, by integrated use of RUSLE, remote sensing, and GIS / Sumedh R. Kashiwar in Natural Hazards, vol 110 n° 2 (January 2022)
PermalinkMonitoring and analysis of crop irrigation dynamics in Central Italy through the use of MODIS NDVI data / Marta Chiesi in European journal of remote sensing, vol 55 n° 1 (January 2022)
PermalinkMonitoring grassland dynamics by exploiting multi-modal satellite image time series / Anatol Garioud (2022)
PermalinkSenRVM: A multi-modal deep learning regression methodology for continuous vegetation monitoring with dense temporal NDVI time series / Anatol Garioud (2022)
PermalinkPermalinkIdentifying surface urban heat island drivers and their spatial heterogeneity in China’s 281 cities: An empirical study based on multiscale geographically weighted regression / Lu Niu in Remote sensing, vol 13 n° 21 (November-1 2021)
PermalinkRecurrent-based regression of Sentinel time series for continuous vegetation monitoring / Anatol Garioud in Remote sensing of environment, vol 263 (15 September 2021)
PermalinkPermalink