Descripteur
Termes descripteurs IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géographie physique > météorologie > aérologie > atmosphère terrestre > ionosphère > modèle ionosphérique
modèle ionosphériqueSynonyme(s)modèle de propagation ionosphèriqueVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
GLONASS FDMA data for RTK positioning: a five-system analysis / Andreas Brack in GPS solutions, vol 25 n° 1 (January 2021)
![]()
[article]
Titre : GLONASS FDMA data for RTK positioning: a five-system analysis Type de document : Article/Communication Auteurs : Andreas Brack, Auteur ; Benjamin Männel, Auteur ; Harald Schuh, Auteur Année de publication : 2021 Article en page(s) : n° 9 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] ambiguïté entière
[Termes descripteurs IGN] CDMA
[Termes descripteurs IGN] fréquence
[Termes descripteurs IGN] modèle ionosphérique
[Termes descripteurs IGN] positionnement cinématique en temps réel
[Termes descripteurs IGN] positionnement par GNSS
[Termes descripteurs IGN] résolution d'ambiguïté
[Termes descripteurs IGN] satellite GLONASS
[Termes descripteurs IGN] signal GLONASSRésumé : (auteur) The use of the GLONASS legacy signals for real-time kinematic positioning is considered. Due to the FDMA multiplexing scheme, the conventional CDMA observation model has to be modified to restore the integer estimability of the ambiguities. This modification has a strong impact on positioning capabilities. In particular, the ambiguity resolution performance of this model is clearly weaker than for CDMA systems, so that fast and reliable full ambiguity resolution is usually not feasible for standalone GLONASS, and adding GLONASS data in a multi-GNSS approach can reduce the ambiguity resolution performance of the combined model. Partial ambiguity resolution was demonstrated to be a suitable tool to overcome this weakness (Teunissen in GPS Solut 23(4):100, 2019). We provide an exhaustive formal analysis of the positioning precision and ambiguity resolution capabilities for short, medium, and long baselines in a multi-GNSS environment with GPS, Galileo, BeiDou, QZSS, and GLONASS. Simulations are used to show that with a difference test-based partial ambiguity resolution method, adding GLONASS data improves the positioning performance in all considered cases. Real data from different baselines are used to verify these findings. When using all five available systems, instantaneous centimeter-level positioning is possible on an 88.5 km baseline with the ionosphere weighted model, and on average, only 3.27 epochs are required for a long baseline with the ionosphere float model, thereby enabling near instantaneous solutions. Numéro de notice : A2021-009 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-020-01043-5 date de publication en ligne : 24/10/2020 En ligne : https://doi.org/10.1007/s10291-020-01043-5 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96299
in GPS solutions > vol 25 n° 1 (January 2021) . - n° 9[article]A multi-frequency and multi-GNSS method for the retrieval of the ionospheric TEC and intraday variability of receiver DCBs / Min Li in Journal of geodesy, vol 94 n° 10 (October 2020)
![]()
[article]
Titre : A multi-frequency and multi-GNSS method for the retrieval of the ionospheric TEC and intraday variability of receiver DCBs Type de document : Article/Communication Auteurs : Min Li, Auteur ; Yunbin Yuan, Auteur ; Xiao Zhang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 14 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes descripteurs IGN] erreur systématique
[Termes descripteurs IGN] fréquence multiple
[Termes descripteurs IGN] modèle ionosphérique
[Termes descripteurs IGN] positionnement différentiel
[Termes descripteurs IGN] positionnement par BeiDou
[Termes descripteurs IGN] récepteur GNSS
[Termes descripteurs IGN] teneur totale en électrons
[Termes descripteurs IGN] variation diurneRésumé : (auteur) As one of the important factors influencing the ionospheric total electron content (TEC) estimation accuracy, receiver differential code biases (DCBs) should be properly removed from global navigation satellite system (GNSS) measurements. The intraday variability in receiver DCBs (rDCBs), which is usually ignored in the commonly used ionospheric observable retrieval procedure, has been identified as one of the major errors degrading the accuracy of TEC estimation. The modified carrier-to-code leveling (MCCL) method can be adopted to eliminate the impact of the rDCB variability on the retrieval of the ionospheric TEC from dual-frequency (DF) GNSS observations. In this contribution, we extend the MCCL method from two aspects. First, the DF MCCL method is adapted to the multi-frequency (MF) case, in which DF, triple-frequency or even arbitrary-frequency observations can be readily processed to simultaneously estimate both the ionospheric TEC and rDCB variations. Second, the MCCL method is refined to enable the handling of GLONASS data by accounting for the effects of code inter-frequency biases induced by the frequency division multiple access (FDMA) technology. Based on the test results, the retrieval accuracy of the ionospheric TEC using our proposed method can be improved from 9.47 TECu to 2.67 TECu in the presence of significant intraday rDCB variations. We discovered that the maximum difference in the rDCB variations of the same satellite system between different frequency bands can be as large as 10 ns. The dependence of multi-GNSS and MF rDCB variations on the ambient temperature is further verified in this study. The results show that the temperature dependence of rDCB varies among different satellite systems and frequency bands. Compared to the Galileo, GPS and GLONASS satellite systems, the Beidou system (BDS) rDCB estimates exhibit a stronger correlation with the measured temperature. The percentages of stations with the mean absolute Pearson correlation coefficient value above 0.8 are 27.17% for GPS, 30.58% for GLONASS, 43.78% for BDS and 33.9% for Galileo, respectively. Numéro de notice : A2020-650 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01437-w date de publication en ligne : 12/10/2020 En ligne : https://doi.org/10.1007/s00190-020-01437-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96083
in Journal of geodesy > vol 94 n° 10 (October 2020) . - 14 p.[article]An improved constrained simultaneous iterative reconstruction technique for ionospheric tomography / Yi Bin Yao in GPS solutions, Vol 24 n° 3 (July 2020)
![]()
[article]
Titre : An improved constrained simultaneous iterative reconstruction technique for ionospheric tomography Type de document : Article/Communication Auteurs : Yi Bin Yao, Auteur ; Changzhi Zhai, Auteur ; Jian Kong, Auteur ; et al., Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] données GNSS
[Termes descripteurs IGN] interpolation
[Termes descripteurs IGN] modèle ionosphérique
[Termes descripteurs IGN] reconstruction 3D
[Termes descripteurs IGN] teneur totale en électrons
[Termes descripteurs IGN] tomographie
[Termes descripteurs IGN] voxelRésumé : (auteur) Global Navigation Satellite System (GNSS) is now widely used for continuous ionospheric observations. Three-dimensional computerized ionospheric tomography (3DCIT) is an important tool for the reconstruction of electron density distributions in the ionosphere through effective use of the GNSS data. More specifically, the 3DCIT technique is able to resolve the three-dimensional electron density distributions over the reconstructed area based on the GNSS slant total electron content (STEC) observations. We present an Improved Constrained Simultaneous Iterative Reconstruction Technique (ICSIRT) algorithm that differs from the traditional ionospheric tomography methods in 3 ways. First, the ICSIRT computes the electron density corrections based on the product of the intercept and electron density within voxels so that the assignment of corrections at different heights becomes more reasonable. Second, an Inverse Distance Weighted (IDW) interpolation is used to restrict the electron density values in the voxels not traversed by GNSS rays, thereby ensuring the smoothness of the reconstructed region. Also, to improve the reconstruction accuracy around the HmF2 (the peak height of the F2 layer) altitude, a multiresolution grid is adopted in the vertical direction, with a 10-km resolution from 200 to 420 km and a 50-km resolution at other altitudes. The new algorithm has been applied to the GNSS data over the European and North American regions in different case studies that involve different seasonal conditions as well as a major storm. In the European region experiment, reconstruction results show that the new ICSIRT algorithm can effectively improve the reconstruction of the GNSS data. The electron density profiles retrieved from ICSIRT are much closer to the ionosonde observations than those from its predecessor, namely, the Constrained Simultaneous Iteration Reconstruction Technique (CSIRT). The reconstruction accuracy is significantly improved. In the North American region experiment, the electron density profiles in ICSIRT results show better agreement with incoherent scatter radar observations than CSIRT, even for the topside profiles. Numéro de notice : A2020-227 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-020-00981-4 date de publication en ligne : 18/04/2020 En ligne : https://doi.org/10.1007/s10291-020-00981-4 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94958
in GPS solutions > Vol 24 n° 3 (July 2020)[article]Assessing the quality of ionospheric models through GNSS positioning error: methodology and results / Adria Rovira-Garcia in GPS solutions, vol 24 n° 1 (January 2020)
![]()
[article]
Titre : Assessing the quality of ionospheric models through GNSS positioning error: methodology and results Type de document : Article/Communication Auteurs : Adria Rovira-Garcia, Auteur ; Deimos Ibáñez-Segura, Auteur ; Raül Orús-Pérez, Auteur ; et al., Auteur Année de publication : 2020 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes descripteurs IGN] erreur de positionnement
[Termes descripteurs IGN] International GNSS Service
[Termes descripteurs IGN] modèle ionosphérique
[Termes descripteurs IGN] phase
[Termes descripteurs IGN] positionnement par GNSS
[Termes descripteurs IGN] positionnement ponctuel précis
[Termes descripteurs IGN] retard ionosphèrique
[Termes descripteurs IGN] trajet multiple
[Termes descripteurs IGN] valeur aberranteRésumé : (Auteur) Single-frequency users of the global navigation satellite system (GNSS) must correct for the ionospheric delay. These corrections are available from global ionospheric models (GIMs). Therefore, the accuracy of the GIM is important because the unmodeled or incorrectly part of ionospheric delay contributes to the positioning error of GNSS-based positioning. However, the positioning error of receivers located at known coordinates can be used to infer the accuracy of GIMs in a simple manner. This is why assessment of GIMs by means of the position domain is often used as an alternative to assessments in the ionospheric delay domain. The latter method requires accurate reference ionospheric values obtained from a network solution and complex geodetic modeling. However, evaluations using the positioning error method present several difficulties, as evidenced in recent works, that can lead to inconsistent results compared to the tests using the ionospheric delay domain. We analyze the reasons why such inconsistencies occur, applying both methodologies. We have computed the position of 34 permanent stations for the entire year of 2014 within the last Solar Maximum. The positioning tests have been done using code pseudoranges and carrier-phase leveled (CCL) measurements. We identify the error sources that make it difficult to distinguish the part of the positioning error that is attributable to the ionospheric correction: the measurement noise, pseudorange multipath, evaluation metric, and outliers. Once these error sources are considered, we obtain equivalent results to those found in the ionospheric delay domain assessments. Accurate GIMs can provide single-frequency navigation positioning at the decimeter level using CCL measurements and better positions than those obtained using the dual-frequency ionospheric-free combination of pseudoranges. Finally, some recommendations are provided for further studies of ionospheric models using the position domain method. Numéro de notice : A2020-024 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-019-0918-z date de publication en ligne : 02/11/2019 En ligne : https://doi.org/10.1007/s10291-019-0918-z Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94468
in GPS solutions > vol 24 n° 1 (January 2020)[article]Efficiency of updating the ionospheric models using total electron content at mid- and sub-auroral latitudes / Daria S. Kotova in GPS solutions, vol 24 n° 1 (January 2020)
![]()
[article]
Titre : Efficiency of updating the ionospheric models using total electron content at mid- and sub-auroral latitudes Type de document : Article/Communication Auteurs : Daria S. Kotova, Auteur ; Vladimir B. Ovodenko, Auteur ; Yury V. Yasyukevich, Auteur ; et al., Auteur Année de publication : 2020 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] Finlande
[Termes descripteurs IGN] mise à jour
[Termes descripteurs IGN] modèle ionosphérique
[Termes descripteurs IGN] récepteur GLONASS
[Termes descripteurs IGN] récepteur GPS
[Termes descripteurs IGN] Russie
[Termes descripteurs IGN] teneur totale en électronsRésumé : (Auteur) Describing the current ionospheric conditions is crucial to solving problems of radio communication, radar, and navigation. Techniques to update ionospheric models using current measurements found a wide application to improve the ionosphere description. We present the results of updating the NeQuick and IRI-Plas empirical ionosphere models using the slant total electron content observed by ground-based GPS/GLONASS receivers. The updating method is based on calculating the effective value of the solar activity index, which allows minimizing the discrepancy between the measured and the model-calculated slant TEC. We estimated the updating efficiency based on the foF2 observational data obtained by ionosonde measurements. We calculated the data for 4 stations: Irkutsk, Norilsk, Kaliningrad, and Sodankylä. We analyzed 4 days in 2014: March 22, June 22, September 22, and December 18. We found that, in some cases, upon updating, the IRI-Plas underestimates the foF2, whereas NeQuick, on the contrary, overestimates it. We found a seasonal dependence of the updating efficiency of the ionosphere model using slant TEC. Possible causes of this dependence might be associated with the seasonal dependence of the correctness of model’s reproduction of the latitude–longitude TEC distribution. In general, we found the low level of the updating efficiency of the foF2 using slant TEC. This can be mainly explained by the fact that the models describe the electron density vertical profile and ionospheric slab thickness incorrectly. Numéro de notice : A2020-021 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-019-0936-x date de publication en ligne : 11/12/2019 En ligne : https://doi.org/10.1007/s10291-019-0936-x Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94462
in GPS solutions > vol 24 n° 1 (January 2020)[article]Reducing convergence time of precise point positioning with ionospheric constraints and receiver differential code bias modeling / Yan Xiang in Journal of geodesy, vol 94 n°1 (January 2020)
PermalinkPerformance evaluation of real-time global ionospheric maps provided by different IGS analysis centers / Xiaodong Ren in GPS solutions, vol 23 n° 4 (October 2019)
PermalinkA 4D tomographic ionospheric model to support PPP-RTK / German Olivares-Pulido in Journal of geodesy, vol 93 n° 9 (September 2019)
PermalinkConsistency and analysis of ionospheric observables obtained from three precise point positioning models / Yan Xiang in Journal of geodesy, vol 93 n° 8 (August 2019)
PermalinkHelmert-VCE-aided fast-WTLS approach for global ionospheric VTEC modelling using data from GNSS, satellite altimetry and radio occultation / Andong Hu in Journal of geodesy, vol 93 n°6 (June 2019)
PermalinkRefining ionospheric delay modeling for undifferenced and uncombined GNSS data processing / Qile Zhao in Journal of geodesy, vol 93 n° 4 (April 2019)
PermalinkEvaluation of the IRI-2016 and NeQuick electron content specification by COSMIC GPS radio occultation, ground-based GPS and Jason-2 joint altimeter/GPS observations / Iurii Cherniak in Advances in space research, vol 63 n° 6 (15 March 2019)
PermalinkEnhanced local ionosphere model for multi-constellations single frequency precise point positioning applications: Egyptian case study / Emad El Manaily in Artificial satellites, vol 53 n° 4 (December 2018)
![]()
PermalinkReal-Time Precise Point Positioning (RTPPP) with raw observations and its application in real-time regional ionospheric VTEC modeling / Teng Liu in Journal of geodesy, vol 92 n° 11 (November 2018)
PermalinkCarrier phase bias estimation of geometry-free linear combination of GNSS signals for ionospheric TEC modeling / Anna Krypiak-Gregorczyk in GPS solutions, vol 22 n° 2 (April 2018)
Permalink