Descripteur
Termes IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géographie physique > météorologie > aérologie > atmosphère terrestre > ionosphère > teneur totale en électrons
teneur totale en électronsSynonyme(s)TEC ;densité des électrons contenu électronique total |
Documents disponibles dans cette catégorie (116)



Etendre la recherche sur niveau(x) vers le bas
A new method for improving the performance of an ionospheric model developed by multi-instrument measurements based on artificial neural network / Wang Li in Advances in space research, vol 67 n° 1 (January 2021)
![]()
[article]
Titre : A new method for improving the performance of an ionospheric model developed by multi-instrument measurements based on artificial neural network Type de document : Article/Communication Auteurs : Wang Li, Auteur ; Changyong He , Auteur ; Andong Hu, Auteur ; Dongsheng Zhao, Auteur ; Yi Shen, Auteur ; Kefei Zhang, Auteur
Année de publication : 2021 Article en page(s) : pp 20 - 34 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] correction ionosphérique
[Termes IGN] image Formosat/COSMIC
[Termes IGN] modèle ionosphérique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] teneur totale en électronsRésumé : (auteur) There are remarkable ionospheric discrepancies between space-borne (COSMIC) measurements and ground-based (ionosonde) observations, the discrepancies could decrease the accuracies of the ionospheric model developed by multi-source data seriously. To reduce the discrepancies between two observational systems, the peak frequency (foF2) and peak height (hmF2) derived from the COSMIC and ionosonde data are used to develop the ionospheric models by an artificial neural network (ANN) method, respectively. The averaged root-mean-square errors (RMSEs) of COSPF (COSMIC peak frequency model), COSPH (COSMIC peak height model), IONOPF (Ionosonde peak frequency model) and IONOPH (Ionosonde peak height model) are 0.58 MHz, 19.59 km, 0.92 MHz and 23.40 km, respectively. The results indicate that the discrepancies between these models are dependent on universal time, geographic latitude and seasons. The peak frequencies measured by COSMIC are generally larger than ionosonde’s observations in the nighttime or middle-latitudes with the amplitude of lower than 25%, while the averaged peak height derived from COSMIC is smaller than ionosonde’s data in the polar regions. The differences between ANN-based maps and references show that the discrepancies between two ionospheric detecting techniques are proportional to the intensity of solar radiation. Besides, a new method based on the ANN technique is proposed to reduce the discrepancies for improving ionospheric models developed by multiple measurements, the results indicate that the RMSEs of ANN models optimized by the method are 14–25% lower than the models without the application of the method. Furthermore, the ionospheric model built by the multiple measurements with the application of the method is more powerful in capturing the ionospheric dynamic physics features, such as equatorial ionization, Weddell Sea, mid-latitude summer nighttime and winter anomalies. In conclusion, the new method is significant in improving the accuracy and physical characteristics of an ionospheric model based on multi-source observations. Numéro de notice : A2021-986 Affiliation des auteurs : ENSG+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.asr.2020.07.032 Date de publication en ligne : 16/12/2020 En ligne : https://doi.org/10.1016/j.asr.2020.07.032 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102912
in Advances in space research > vol 67 n° 1 (January 2021) . - pp 20 - 34[article]A multi-frequency and multi-GNSS method for the retrieval of the ionospheric TEC and intraday variability of receiver DCBs / Min Li in Journal of geodesy, vol 94 n° 10 (October 2020)
![]()
[article]
Titre : A multi-frequency and multi-GNSS method for the retrieval of the ionospheric TEC and intraday variability of receiver DCBs Type de document : Article/Communication Auteurs : Min Li, Auteur ; Yunbin Yuan, Auteur ; Xiao Zhang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 14 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] erreur systématique
[Termes IGN] fréquence multiple
[Termes IGN] modèle ionosphérique
[Termes IGN] positionnement différentiel
[Termes IGN] positionnement par BeiDou
[Termes IGN] récepteur GNSS
[Termes IGN] teneur totale en électrons
[Termes IGN] variation diurneRésumé : (auteur) As one of the important factors influencing the ionospheric total electron content (TEC) estimation accuracy, receiver differential code biases (DCBs) should be properly removed from global navigation satellite system (GNSS) measurements. The intraday variability in receiver DCBs (rDCBs), which is usually ignored in the commonly used ionospheric observable retrieval procedure, has been identified as one of the major errors degrading the accuracy of TEC estimation. The modified carrier-to-code leveling (MCCL) method can be adopted to eliminate the impact of the rDCB variability on the retrieval of the ionospheric TEC from dual-frequency (DF) GNSS observations. In this contribution, we extend the MCCL method from two aspects. First, the DF MCCL method is adapted to the multi-frequency (MF) case, in which DF, triple-frequency or even arbitrary-frequency observations can be readily processed to simultaneously estimate both the ionospheric TEC and rDCB variations. Second, the MCCL method is refined to enable the handling of GLONASS data by accounting for the effects of code inter-frequency biases induced by the frequency division multiple access (FDMA) technology. Based on the test results, the retrieval accuracy of the ionospheric TEC using our proposed method can be improved from 9.47 TECu to 2.67 TECu in the presence of significant intraday rDCB variations. We discovered that the maximum difference in the rDCB variations of the same satellite system between different frequency bands can be as large as 10 ns. The dependence of multi-GNSS and MF rDCB variations on the ambient temperature is further verified in this study. The results show that the temperature dependence of rDCB varies among different satellite systems and frequency bands. Compared to the Galileo, GPS and GLONASS satellite systems, the Beidou system (BDS) rDCB estimates exhibit a stronger correlation with the measured temperature. The percentages of stations with the mean absolute Pearson correlation coefficient value above 0.8 are 27.17% for GPS, 30.58% for GLONASS, 43.78% for BDS and 33.9% for Galileo, respectively. Numéro de notice : A2020-650 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01437-w Date de publication en ligne : 12/10/2020 En ligne : https://doi.org/10.1007/s00190-020-01437-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96083
in Journal of geodesy > vol 94 n° 10 (October 2020) . - 14 p.[article]Estimation of frequency and duration of ionospheric disturbances over Turkey with IONOLAB-FFT algorithm / Secil Karatay in Journal of geodesy, vol 94 n° 9 (September 2020)
![]()
[article]
Titre : Estimation of frequency and duration of ionospheric disturbances over Turkey with IONOLAB-FFT algorithm Type de document : Article/Communication Auteurs : Secil Karatay, Auteur Année de publication : 2020 Article en page(s) : n° 89 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] fréquence
[Termes IGN] oscillation
[Termes IGN] perturbation ionosphérique
[Termes IGN] récepteur bifréquence
[Termes IGN] récepteur GPS
[Termes IGN] teneur totale en électrons
[Termes IGN] transformation rapide de Fourier
[Termes IGN] TurquieRésumé : (auteur) One of the more common methods of observation of variability of the Earth’s ionosphere is based on total electron content (TEC) estimated from ground-based dual-frequency Global Positioning System (GPS) receivers. Variations in solar, geomagnetic and seismic activity cause depletions or enhancements in the ionospheric electron concentrations that can be detected as disturbances. Some of these disturbances have wave-like characteristics, where frequency of oscillation can be used to identify and classify the disturbance. In this study, the frequency of such periodic disturbances is estimated using a fast Fourier transform (FFT)-based method, namely IONOLAB-FFT, in the spectral domain. IONOLAB-FFT, which was initially developed to be used on slant TEC (STEC), is modified to be applied to TEC in the local zenith direction of the receiver. The algorithm is tested using literature data on disturbances generated by a geomagnetic activity, a solar flare, a medium-scale traveling ionospheric disturbance (MSTID), a large-scale TID (LSTID) and an earthquake. An accordance with these known disturbances is observed in running IONOLAB-FFT, and the main frequencies and durations of the disturbances are estimated. IONOLAB-FFT method is applied to TEC computed from Turkish Permanent GPS Network (TNPGN-Active) which lies in mid-latitude region to detect the any wave-like oscillations, sudden disturbances and other irregularities during December, March, June and September months for 2010, 2011 and 2012 years. It is observed that a large number of the estimated frequencies are accumulated between 0.08 and 0.14 MHz corresponding to periods of 3.5 h to 2 h. The significant frequencies are grouped less than 0.28 MHz. A large number of the durations of the oscillations are between 425 and 550 min in 2010, 300 and 550 min in 2011 and 350 and 400 min in 2012. The longest duration (around 800 min: 13.33 h) is observed in December months, and the shortest duration (around 2 h) is observed in September months. Numéro de notice : A2020-541 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01416-1 Date de publication en ligne : 31/08/2020 En ligne : https://doi.org/10.1007/s00190-020-01416-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95743
in Journal of geodesy > vol 94 n° 9 (September 2020) . - n° 89[article]An improved constrained simultaneous iterative reconstruction technique for ionospheric tomography / Yi Bin Yao in GPS solutions, Vol 24 n° 3 (July 2020)
![]()
[article]
Titre : An improved constrained simultaneous iterative reconstruction technique for ionospheric tomography Type de document : Article/Communication Auteurs : Yi Bin Yao, Auteur ; Changzhi Zhai, Auteur ; Jian Kong, Auteur ; et al., Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] données GNSS
[Termes IGN] interpolation
[Termes IGN] modèle ionosphérique
[Termes IGN] reconstruction 3D
[Termes IGN] teneur totale en électrons
[Termes IGN] tomographie
[Termes IGN] voxelRésumé : (auteur) Global Navigation Satellite System (GNSS) is now widely used for continuous ionospheric observations. Three-dimensional computerized ionospheric tomography (3DCIT) is an important tool for the reconstruction of electron density distributions in the ionosphere through effective use of the GNSS data. More specifically, the 3DCIT technique is able to resolve the three-dimensional electron density distributions over the reconstructed area based on the GNSS slant total electron content (STEC) observations. We present an Improved Constrained Simultaneous Iterative Reconstruction Technique (ICSIRT) algorithm that differs from the traditional ionospheric tomography methods in 3 ways. First, the ICSIRT computes the electron density corrections based on the product of the intercept and electron density within voxels so that the assignment of corrections at different heights becomes more reasonable. Second, an Inverse Distance Weighted (IDW) interpolation is used to restrict the electron density values in the voxels not traversed by GNSS rays, thereby ensuring the smoothness of the reconstructed region. Also, to improve the reconstruction accuracy around the HmF2 (the peak height of the F2 layer) altitude, a multiresolution grid is adopted in the vertical direction, with a 10-km resolution from 200 to 420 km and a 50-km resolution at other altitudes. The new algorithm has been applied to the GNSS data over the European and North American regions in different case studies that involve different seasonal conditions as well as a major storm. In the European region experiment, reconstruction results show that the new ICSIRT algorithm can effectively improve the reconstruction of the GNSS data. The electron density profiles retrieved from ICSIRT are much closer to the ionosonde observations than those from its predecessor, namely, the Constrained Simultaneous Iteration Reconstruction Technique (CSIRT). The reconstruction accuracy is significantly improved. In the North American region experiment, the electron density profiles in ICSIRT results show better agreement with incoherent scatter radar observations than CSIRT, even for the topside profiles. Numéro de notice : A2020-227 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-020-00981-4 Date de publication en ligne : 18/04/2020 En ligne : https://doi.org/10.1007/s10291-020-00981-4 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94958
in GPS solutions > Vol 24 n° 3 (July 2020)[article]SIMuRG: System for Ionosphere Monitoring and Research from GNSS / Yury V. Yasyukevich in GPS solutions, Vol 24 n° 3 (July 2020)
![]()
[article]
Titre : SIMuRG: System for Ionosphere Monitoring and Research from GNSS Type de document : Article/Communication Auteurs : Yury V. Yasyukevich, Auteur ; Alexander V. Kiselev, Auteur ; Ilyav Zhivetiev, Auteur ; et al., Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] collecte de données
[Termes IGN] ionosphère
[Termes IGN] perturbation ionosphérique
[Termes IGN] récepteur GNSS
[Termes IGN] site web
[Termes IGN] surveillance
[Termes IGN] teneur totale en électronsRésumé : (auteur) Currently, more than 6000 operating GNSS receivers deliver observations to multiple servers. Ionospheric data are derived from these measurements providing outstanding space coverage and time resolution. There are about 200 million independent measurements daily. Researchers need sophisticated software tools to deal with such a large amount of data. We present recent advances and products from the System for Ionosphere Monitoring and Research from GNSS (SIMuRG). Currently, SIMuRG provides the total electron content (TEC) variations filtered within 2–10 min, 10–20 min, and 20–60 min, the Rate of the TEC Index, the Along Arc TEC Rate index, and the vertical TEC. SIMuRG is an online service at http://simurg.iszf.irk.ru. The system can be used free of charge and allows calculating both maps and series for arbitrary time intervals and geographic regions. All the data products are available in the form of data or figures. We discuss the system and its geophysics applications. Numéro de notice : A2020-327 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-020-00983-2 Date de publication en ligne : 24/04/2020 En ligne : https://doi.org/10.1007/s10291-020-00983-2 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95208
in GPS solutions > Vol 24 n° 3 (July 2020)[article]The impact of second-order ionospheric delays on the ZWD estimation with GPS and BDS measurements / Shaocheng Zhang in GPS solutions, vol 24 n° 2 (April 2020)
PermalinkAdvanced machine learning optimized by the genetic algorithm in ionospheric models using long-term multi-instrument observations / Wang Li in Remote sensing, vol 12 n° 5 (March 2020)
PermalinkEfficiency of updating the ionospheric models using total electron content at mid- and sub-auroral latitudes / Daria S. Kotova in GPS solutions, vol 24 n° 1 (January 2020)
PermalinkEstimation and representation of regional atmospheric corrections for augmenting real-time single-frequency PPP / Peiyuan Zhou in GPS solutions, vol 24 n° 1 (January 2020)
PermalinkReducing convergence time of precise point positioning with ionospheric constraints and receiver differential code bias modeling / Yan Xiang in Journal of geodesy, vol 94 n°1 (January 2020)
PermalinkPermalinkMeasuring phase scintillation at different frequencies with conventional GNSS receivers operating at 1 Hz / Viet Khoi Nguyen in Journal of geodesy, vol 93 n°10 (October 2019)
PermalinkPerformance evaluation of real-time global ionospheric maps provided by different IGS analysis centers / Xiaodong Ren in GPS solutions, vol 23 n° 4 (October 2019)
PermalinkHelmert-VCE-aided fast-WTLS approach for global ionospheric VTEC modelling using data from GNSS, satellite altimetry and radio occultation / Andong Hu in Journal of geodesy, vol 93 n°6 (June 2019)
PermalinkVertical ionospheric delay estimation for single-receiver operation / Ahmed Elsayed in Journal of applied geodesy, vol 13 n° 2 (April 2019)
Permalink