Descripteur
Documents disponibles dans cette catégorie (12)



Etendre la recherche sur niveau(x) vers le bas
Hybrid XGboost model with various Bayesian hyperparameter optimization algorithms for flood hazard susceptibility modeling / Saeid Janizadeh in Geocarto international, vol 37 n° 25 ([01/12/2022])
![]()
[article]
Titre : Hybrid XGboost model with various Bayesian hyperparameter optimization algorithms for flood hazard susceptibility modeling Type de document : Article/Communication Auteurs : Saeid Janizadeh, Auteur Année de publication : 2022 Article en page(s) : pp 8273 - 8292 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] ArcGIS
[Termes IGN] bassin hydrographique
[Termes IGN] cartographie des risques
[Termes IGN] classification par arbre de décision
[Termes IGN] colinéarité
[Termes IGN] estimation bayesienne
[Termes IGN] Extreme Gradient Machine
[Termes IGN] inondation
[Termes IGN] modèle numérique de surface
[Termes IGN] modélisation spatiale
[Termes IGN] optimisation (mathématiques)
[Termes IGN] TéhéranRésumé : (auteur) The purpose of this investigation is to develop an optimal model to flood susceptibility mapping in the Kan watershed, Tehran, Iran. Therefore, in this study, three Bayesian optimization hyper-parameter algorithms including Upper confidence bound (UCB), Probability of improvement (PI) and Expected improvement (EI) in order to Extreme Gradient Boosting (XGB) machine learning model optimization and Extreme randomize tree (ERT) model for modeling flood hazard were used. In order to perform flood susceptibility mapping, 118 historic flood locations were identified and analyzed using 17 geo-environmental explanatory variables to predict flooding susceptibility. Flood locations data were divided into 70% for training and 30% for testing of models developed. The receiver operating characteristic (ROC) curve parameters were used to evaluate the performance of the models. The evaluation results based on the criterion area under curve (AUC) in the testing stage showed that the ERT and XGB models have efficiencies of 91.37% and 91.95%, respectively. The evaluation of the efficiency of Bayesian hyperparameters optimization methods on the XGB model also showed that these methods increase the efficiency of the XGB model, so that the model efficiency using these methods EI-XGB, POI-XGB and UCB-XGB based on the AUC in the testing stage were 95.89%, 96.87% and 96.38%, respectively. The results of the relative importance of the five models shows that the variables of elevation and distance from the river are the significant compared to other variables in predicting flood hazard in the Kan watershed. Numéro de notice : A2022-931 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2021.1996641 Date de publication en ligne : 29/10/2021 En ligne : https://doi.org/10.1080/10106049.2021.1996641 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102666
in Geocarto international > vol 37 n° 25 [01/12/2022] . - pp 8273 - 8292[article]A model development on GIS-driven data to predict temporal daily collision through integrating Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN) algorithms; case study: Tehran-Qazvin freeway / Reza Sanayeia in Geocarto international, vol 37 n° 14 ([20/07/2022])
![]()
[article]
Titre : A model development on GIS-driven data to predict temporal daily collision through integrating Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN) algorithms; case study: Tehran-Qazvin freeway Type de document : Article/Communication Auteurs : Reza Sanayeia, Auteur ; Alireza Vafaeinejad, Auteur ; Jalal Karami, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 4141 - 4157 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] accident de la route
[Termes IGN] autocorrélation
[Termes IGN] autoroute
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] modèle de simulation
[Termes IGN] réseau neuronal artificiel
[Termes IGN] système d'information géographique
[Termes IGN] Téhéran
[Termes IGN] transformation en ondelettesRésumé : (auteur) The aim of this study is to develop a model to predict temporal daily collision by integrating of Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN) algorithms. As a case study, the integrated model was tested on 1097 daily traffic collisions data of Karaj-Qazvin freeway from 2009 to 2013 and the results were compared with the conventional ANN prediction model. In this method, initially, the raw collision data were analyzed, normalized, and classified via Geographical Information System (GIS). Partial Autocorrelation Function (PACF) was also utilized to evaluate the temporal autocorrelation for consecutive existing daily data. The results of this study showed that the proposed integrated DWT-ANN method provided higher predictive accuracy in daily traffic collision than ANN model by increasing coefficient of determination (R2) from 0.66 to 0.82. Numéro de notice : A2022-650 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : https://doi.org/10.1080/10106049.2021.1871669 Date de publication en ligne : 19/01/2021 En ligne : https://doi.org/10.1080/10106049.2021.1871669 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101472
in Geocarto international > vol 37 n° 14 [20/07/2022] . - pp 4141 - 4157[article]Three-dimensional building change detection using object-based image analysis (case study: Tehran) / Fatemeh Tabib Mahmoudi in Applied geomatics, vol 13 n° 3 (September 2021)
![]()
[article]
Titre : Three-dimensional building change detection using object-based image analysis (case study: Tehran) Type de document : Article/Communication Auteurs : Fatemeh Tabib Mahmoudi, Auteur ; Sharareh Hosseini, Auteur Année de publication : 2021 Article en page(s) : pp 325 - 332 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] analyse diachronique
[Termes IGN] Bâti-3D
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] gestion urbaine
[Termes IGN] hauteur du bâti
[Termes IGN] Matlab
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] modèle numérique de surface
[Termes IGN] segmentation d'image
[Termes IGN] TéhéranRésumé : (auteur) Natural disasters such as earthquakes and floods together with the urban sprawl conducted by increasing the population make multi-temporal changes in building areas. Destruction, buildings’ renovation, and constructing new buildings are the main changes of the urban areas that should be detected to update three-dimensional city models. The results of performing three-dimensional changes detecting of high altitude objects such as buildings are more close to reality than the two-dimensional methods. In this study, a three-dimensional changes detection method is proposed based on digital elevation models (DEMs). In the first step of this proposed method, the normalized digital surface model (nDSM) is generated for timely datasets. Then, object-based image analysis is utilized by performing segmentation followed by the structural classification of DEMs. Differencing and comparing the multi-temporal classification maps as the third step of the proposed algorithm led to analyzing the occurred changes. The obtained results are evaluated in an urban area in Tehran, Iran, in a 9-year time interval. These results represent −9.7% decreasing rate in low-rise buildings and also −1.37% decreases in the ground. Moreover, the class of high-rise buildings increased for +16.4% which conforms to making new constructions in addition to the renovation of low-rise buildings. According to the area analyzing of the changes, 4.8% of the investigated study area has new constructions, 3.05% has buildings’ renovation, and 3.89% has destruction in that 9-year period. Numéro de notice : A2021-623 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s12518-020-00349-w Date de publication en ligne : 07/01/2021 En ligne : https://doi.org/10.1007/s12518-020-00349-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98247
in Applied geomatics > vol 13 n° 3 (September 2021) . - pp 325 - 332[article]Integrating a forward feature selection algorithm, random forest, and cellular automata to extrapolate urban growth in the Tehran-Karaj region of Iran / Hossein Shafizadeh-Moghadam in Computers, Environment and Urban Systems, vol 87 (May 2021)
![]()
[article]
Titre : Integrating a forward feature selection algorithm, random forest, and cellular automata to extrapolate urban growth in the Tehran-Karaj region of Iran Type de document : Article/Communication Auteurs : Hossein Shafizadeh-Moghadam, Auteur ; Masoud Minaei, Auteur ; Robert Gilmore Pontius Jr, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 101595 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] croissance urbaine
[Termes IGN] extrapolation
[Termes IGN] image Landsat
[Termes IGN] modèle de simulation
[Termes IGN] occupation du sol
[Termes IGN] Téhéran
[Termes IGN] utilisation du solRésumé : (auteur) This paper couples a Forward Feature Selection algorithm with Random Forest (FFS-RF) to create a transition index map, which then guides the spatial allocation for the extrapolation of urban growth using a Cellular Automata model. We used Landsat imagery to generate land cover maps at the years 1998, 2008, and 2018 for the Tehran-Karaj Region (TKR) in Iran. The FFS-RF considered the independent variables of slope, altitude, and distances from urban, crop, greenery, barren, and roads. The FFS-RF revealed temporal non-stationary of drivers from 1998–2008 to 2008–2018. The FFS-RF detected that altitude and distance from greenery were the most important drivers of urban growth during 1998–2008, then distances from crop and barren were the most important drivers during 2008–2018. We used the Total Operating Characteristic to evaluate the transition index maps. Validation during 2008–2018 showed that FFS-RF produced a transition index map that had predictive power no better than an allocation of urban growth near existing urban. Simulation to 2060 extrapolated that Tehran, Karaj, and their adjacent cities will interconnect spatially to form a gigantic city-region. Numéro de notice : A2021-274 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101595 Date de publication en ligne : 16/02/2021 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101595 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97357
in Computers, Environment and Urban Systems > vol 87 (May 2021) . - n° 101595[article]Improving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation / Roholah Yazdan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
![]()
[article]
Titre : Improving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation Type de document : Article/Communication Auteurs : Roholah Yazdan, Auteur ; Masood Varshosaz, Auteur Année de publication : 2021 Article en page(s) : pp 18 - 35 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] base de données d'images
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] corrélation à l'aide de traits caractéristiques
[Termes IGN] corrélation croisée normalisée
[Termes IGN] couple stéréoscopique
[Termes IGN] détection automatique
[Termes IGN] modèle stéréoscopique
[Termes IGN] reconnaissance d'objets
[Termes IGN] segmentation d'image
[Termes IGN] SIFT (algorithme)
[Termes IGN] signalisation routière
[Termes IGN] SURF (algorithme)
[Termes IGN] Téhéran
[Termes IGN] transformation de Hough
[Termes IGN] zone urbaineRésumé : (auteur) Automatic detection and recognition of traffic signs have many applications. However, some problems can affect the accuracy of the existing algorithms, such as changes in environmental light conditions, shadows, the presence of objects of the same colour, significant changes in scale and rotation, as well as obstacles in front of the traffic signs. To overcome these difficulties, a reference image database is usually used that includes different modes of appearing the traffic signs in the images. In order to overcome the effects of scale and rotation, in this paper a new method is presented in which only one reference image is needed for each sign to recognise the traffic sign in an image. In the proposed method, imaging is done in stereo. Using the captured image pair, a virtual image is generated which is then used to recognise the sign. As a result, the recognition is carried out with a minimum number of reference images. Experiments show that the proposed algorithm significantly improves recognition results. The traffic signs are recognised with 93.1% accuracy that enjoys a 4.9% improvement over traditional methods. Numéro de notice : A2021-010 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.003 Date de publication en ligne : 06/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.003 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96304
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 18 - 35[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021011 SL Revue Centre de documentation Revues en salle Disponible 081-2021013 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2021012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Crowdsource mapping of target buildings in hazard: the utilization of smartphone technologies and geographic services / Mohammad H. Vahidnia in Applied geomatics, vol 12 n° 1 (April 2020)
PermalinkCalculating potential evapotranspiration and single crop coefficient based on energy balance equation using Landsat 8 and Sentinel-2 / Ali Mokhtari in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
PermalinkA novel approach to site selection: collaborative multi-criteria decision making through geo-social network (case study: public parking) / Zeinab Neisani Samani in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
PermalinkA multicriteria spatial decision support system for solving emergency service station location problems / Majid Esmaelian in International journal of geographical information science IJGIS, vol 29 n° 7 (July 2015)
PermalinkThe decision task complexity and information acquisition strategies in GIS-MCDA / Mohammadreza Jelokhani-Niaraki in International journal of geographical information science IJGIS, vol 29 n° 2 (February 2015)
PermalinkA morphological approach to predicting urban expansion / Jamal Jokar Arsanjani in Transactions in GIS, vol 18 n° 2 (April 2014)
Permalink3D City Models: Supporting Tool for Urban Planning and Design / E. Parmehr in GIM international, vol 25 n° 2 (February 2011)
Permalink