Descripteur
Termes descripteurs IGN > mathématiques > statistique mathématique > lissage de données
lissage de donnéesVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
Comprehensive time-series analysis of bridge deformation using differential satellite radar interferometry based on Sentinel-1 / Matthias Schlögl in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
![]()
[article]
Titre : Comprehensive time-series analysis of bridge deformation using differential satellite radar interferometry based on Sentinel-1 Type de document : Article/Communication Auteurs : Matthias Schlögl, Auteur ; Barbara Widhalm, Auteur ; Michael Avian, Auteur Année de publication : 2021 Article en page(s) : pp 132 - 146 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] déformation d'édifice
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] lissage de données
[Termes descripteurs IGN] pont
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surveillance d'ouvrage
[Termes descripteurs IGN] variation saisonnière
[Termes descripteurs IGN] Vienne (capitale Autriche)Résumé : (auteur) We present a comprehensive methodological framework for structural deformation monitoring of critical infrastructure assets based on differential SAR interferometry. By employing persistent scatterer interferometry, deformation time series in line-of-sight are derived from freely available Sentinel-1 single look complex products. These raw time series are analysed and refined using an extensive post-processing chain to obtain daily rates for vertical and horizontal deformation components. The post-processing includes cleaning, smoothing and a temperature correction to account for different sensing times in ascending and descending orbits. Longitudinal clustering of time series is used to reveal spatial patterns in the single epoch deformation series. Seasonal trend decomposition of the aggregated time series is performed to separate deformation trends from seasonal deformations. The applicability of the framework is showcased at the example of an integral concrete bridge located in the port of Vienna. Results are validated against in situ deformation measurements. The presented framework constitutes a blueprint for the continuous monitoring of critical infrastructure assets using satellite interferometry, which may supplement conventional structural health monitoring. Numéro de notice : A2021-088 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.001 date de publication en ligne : 30/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96855
in ISPRS Journal of photogrammetry and remote sensing > Vol 172 (February 2021) . - pp 132 - 146[article]A lightweight ensemble spatiotemporal interpolation model for geospatial data / Shifen Cheng in International journal of geographical information science IJGIS, vol 34 n° 9 (September 2020)
![]()
[article]
Titre : A lightweight ensemble spatiotemporal interpolation model for geospatial data Type de document : Article/Communication Auteurs : Shifen Cheng, Auteur ; Peng Peng, Auteur ; Feng Lu, Auteur Année de publication : 2020 Article en page(s) : pp 1849 - 1872 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] coefficient de corrélation
[Termes descripteurs IGN] distance pondérée
[Termes descripteurs IGN] données localisées
[Termes descripteurs IGN] erreur absolue
[Termes descripteurs IGN] interpolation spatiale
[Termes descripteurs IGN] lissage de données
[Termes descripteurs IGN] modélisation spatio-temporelle
[Termes descripteurs IGN] requête spatiotemporelleRésumé : (auteur) Missing data is a common problem in the analysis of geospatial information. Existing methods introduce spatiotemporal dependencies to reduce imputing errors yet ignore ease of use in practice. Classical interpolation models are easy to build and apply; however, their imputation accuracy is limited due to their inability to capture spatiotemporal characteristics of geospatial data. Consequently, a lightweight ensemble model was constructed by modelling the spatiotemporal dependencies in a classical interpolation model. Temporally, the average correlation coefficients were introduced into a simple exponential smoothing model to automatically select the time window which ensured that the sample data had the strongest correlation to missing data. Spatially, the Gaussian equivalent and correlation distances were introduced in an inverse distance-weighting model, to assign weights to each spatial neighbor and sufficiently reflect changes in the spatiotemporal pattern. Finally, estimations of the missing values from temporal and spatial were aggregated into the final results with an extreme learning machine. Compared to existing models, the proposed model achieves higher imputation accuracy by lowering the mean absolute error by 10.93 to 52.48% in the road network dataset and by 23.35 to 72.18% in the air quality station dataset and exhibits robust performance in spatiotemporal mutations. Numéro de notice : A2020-484 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1725016 date de publication en ligne : 12/02/2020 En ligne : https://doi.org/10.1080/13658816.2020.1725016 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95651
in International journal of geographical information science IJGIS > vol 34 n° 9 (September 2020) . - pp 1849 - 1872[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020091 SL Revue Centre de documentation Revues en salle Disponible Pansharpening: context-based generalized Laplacian pyramids by robust regression / Gemine Vivone in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
![]()
[article]
Titre : Pansharpening: context-based generalized Laplacian pyramids by robust regression Type de document : Article/Communication Auteurs : Gemine Vivone, Auteur ; Stefano Marano, Auteur ; Jocelyn Chanussot, Auteur Année de publication : 2020 Article en page(s) : pp 6152 - 6167 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse multirésolution
[Termes descripteurs IGN] fonction de transfert de modulation
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image panchromatique
[Termes descripteurs IGN] lissage de données
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] pansharpening (fusion d'images)
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] transformation en ondelettesRésumé : (auteur) Pansharpening refers to the combination of panchromatic (PAN) and multispectral (MS) images, designed to obtain a fused product retaining the fine spatial resolution of the former and the high spectral content of the latter. One of the most popular and successful approaches to pansharpening is the method known as context-based generalized Laplacian pyramid, which requires as a key ingredient for the estimation of the so-called injection coefficients. In this article, we propose the adoption of robust techniques for the estimation of the injection coefficients and detection strategies to select the clusters for which robust regression is needed, providing a suitable balancing between fusion performance and computational burden. Experimental results conducted on five real data sets acquired by the sensors QuickBird, WorldView-3, and WorldView-4, show the superiority of the proposed method with respect to current state-of-the-art pansharpening techniques. Numéro de notice : A2020-528 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2974806 date de publication en ligne : 04/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2974806 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95706
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6152 - 6167[article]Region level SAR image classification using deep features and spatial constraints / Anjun Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 163 (May 2020)
![]()
[article]
Titre : Region level SAR image classification using deep features and spatial constraints Type de document : Article/Communication Auteurs : Anjun Zhang, Auteur ; Xuezhi Yang, Auteur ; Shuai Fang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 36-48 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] carte de confiance
[Termes descripteurs IGN] champ aléatoire de Markov
[Termes descripteurs IGN] chatoiement
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] lissage de données
[Termes descripteurs IGN] modélisation spatiale
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] superpixelRésumé : (auteur) The region-level SAR image classification algorithms which combine CNN (Convolutional Neural Networks) with super-pixel have been proposed to enhance the classification accuracy compared with the pixel-level algorithms. However, the spatial constraints between the super-pixel regions are not considered, which may limit the performance of these algorithms. To address this problem, an RCC-MRF (RCC, Region Category Confidence-degree) and CNN based region-level SAR image classification algorithm which explores the deep features extracted by CNN and the spatial constraints between super-pixel regions is proposed in this paper. The initial labels of super-pixel regions are obtained using a voting strategy based on the predicted labels CNN. The unary energy function of RCC-MRF is designed to find the category that a region most probably belongs to by using the RCC term which is constructed based on the probability distributions over all categories of pixels predicted by CNN. The binary energy function of RCC-MRF explores the spatial constraints between the adjacent super-pixel regions. In our proposed algorithm, the pixel-level misclassifications can be reduced by the smoothing within regions and the region-level misclassifications will be rectified by minimizing the energy function of RCC-MRF. Experiments have been done on simulated and real SAR images to evaluate the performance of the proposed algorithm. The experimental results demonstrate that the proposed algorithm notably outperforms the other CNN-based region-level SAR image classification algorithms. Numéro de notice : A2020-136 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.03.001 date de publication en ligne : 07/03/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.03.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94752
in ISPRS Journal of photogrammetry and remote sensing > vol 163 (May 2020) . - pp 36-48[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020051 SL Revue Centre de documentation Revues en salle Disponible 081-2020053 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Smoothing and predicting celestial pole offsets using a Kalman filter and smoother / Jolanta Nastula in Journal of geodesy, Vol 94 n°3 (March 2020)
![]()
[article]
Titre : Smoothing and predicting celestial pole offsets using a Kalman filter and smoother Type de document : Article/Communication Auteurs : Jolanta Nastula, Auteur ; T. Mike Chin,, Auteur ; Richard S. Gross, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes descripteurs IGN] filtre de Kalman
[Termes descripteurs IGN] International Earth Rotation Service
[Termes descripteurs IGN] lissage de données
[Termes descripteurs IGN] mission spatiale
[Termes descripteurs IGN] mouvement du pôle
[Termes descripteurs IGN] nutation
[Termes descripteurs IGN] orientation de la Terre
[Termes descripteurs IGN] précession
[Termes descripteurs IGN] radar JPL
[Termes descripteurs IGN] rotation de la Terre
[Termes descripteurs IGN] série temporelleRésumé : (auteur) It has been recognized since the early days of interplanetary spaceflight that accurate navigation requires taking into account changes in the Earth’s rotation. In the 1960s, tracking anomalies during the Ranger VII and VIII lunar missions were traced to errors in the Earth orientation parameters. As a result, Earth orientation calibration methods were improved to support the Mariner IV and V planetary missions. Today, accurate Earth orientation parameters are used to track and navigate every interplanetary spaceflight mission. The approach taken at JPL (Jet Propulsion Laboratory) to provide the interplanetary spacecraft tracking and navigation teams with the UT1 and polar motion parameters that they need is based upon the use of a Kalman filter to combine past measurements of these parameters and predict their future evolution. A model was then used to provide the nutation/precession components of the Earth’s orientation. As a result, variations caused by the free core nutation were not taken into account. But for the highest accuracy, these variations must be considered. So JPL recently developed an approach based upon the use of a Kalman filter and smoother to provide smoothed and predicted celestial pole offsets (CPOs) to the interplanetary spacecraft tracking and navigation teams. The approach used at JPL to do this and an evaluation of the accuracy of the predicted CPOs is given here. For assessing the quality of JPL’s nutation predictions, we compare the time series of dX, dY provided by JPL with the predictions obtained from the IERS Rapid Service/Prediction Centre. Our results confirmed that the approach recently developed by JPL can be used for the successful nutation prediction. In particular, we show that after 90 days of prediction, the estimated errors are 43% lower for dX and 33% lower for dY than in the case of the official IERS products, and an average improvement is 19% and 22% for dX and dY, respectively. Numéro de notice : A2020-156 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01349-9 date de publication en ligne : 15/02/2020 En ligne : https://doi.org/10.1007/s00190-020-01349-9 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94806
in Journal of geodesy > Vol 94 n°3 (March 2020)[article]PermalinkAutomated extraction of 3D vector topographic feature line from terrain point cloud / Wei Zhou in Geocarto international, vol 33 n° 10 (October 2018)
PermalinkA structured regularization framework for spatially smoothing semantic labelings of 3D point clouds / Loïc Landrieu in ISPRS Journal of photogrammetry and remote sensing, vol 132 (October 2017)
![]()
PermalinkA greedy-based multiquadric method for LiDAR-derived ground data reduction / Chuanfa Chen in ISPRS Journal of photogrammetry and remote sensing, vol 102 (April 2015)
PermalinkEarthEnv-DEM90: A nearly-global, void-free, multi-scale smoothed, 90m digital elevation model from fused ASTER and SRTM data / Natalie Robinson in ISPRS Journal of photogrammetry and remote sensing, vol 87 (January 2014)
PermalinkImproving representation of land-use maps derived from object-oriented image classification / Wenxiu Gao in Transactions in GIS, vol 17 n° 3 (June 2013)
PermalinkVisual abstraction and stylisation of maps / Tobias Isenberg in Cartographic journal (the), vol 50 n° 1 (February 2013)
PermalinkAssessment of regression kriging for spatial interpolation: comparisons of seven GIS interpolation methods / Qingmin Meng in Cartography and Geographic Information Science, vol 40 n° 1 (January 2013)
PermalinkDéveloppement et expérimentation de filtres adaptés au lissage d'images de phase InSAR appliqué aux bâtiments / Clémence Dubois in XYZ, n° 130 (mars - mai 2012)
PermalinkStreet-level spatial interpolation using network-based IDW and ordinary kriging / N. Shiode in Transactions in GIS, vol 15 n° 4 (August 2011)
Permalink