Descripteur
Termes IGN > mathématiques > statistique mathématique > lissage de données
lissage de donnéesVoir aussi |
Documents disponibles dans cette catégorie (75)



Etendre la recherche sur niveau(x) vers le bas
Integrating topographic knowledge into point cloud simplification for terrain modelling / Jun Chen in International journal of geographical information science IJGIS, vol 37 n° 5 (May 2023)
![]()
[article]
Titre : Integrating topographic knowledge into point cloud simplification for terrain modelling Type de document : Article/Communication Auteurs : Jun Chen, Auteur ; Liyang Xiong, Auteur ; Bowen Yin, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 988 - 1008 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données topographiques
[Termes IGN] lissage de données
[Termes IGN] modèle numérique de surface
[Termes IGN] semis de points
[Termes IGN] Triangulated Irregular NetworkRésumé : (auteur) Terrain models are widely used to depict the shape of the Earth’s surface. With the development of photogrammetric methods, point cloud data have become one of the most popular data sources for terrain modelling. However, the obtained point clouds are of high density, which often increases redundancy rather than improving accuracy. Therefore, point cloud simplification should be a core component of terrain modelling. This paper proposes a point cloud simplification method by integrating topographic knowledge into terrain modelling (TKPCS). The method contains two steps: (1) topographic knowledge recognition and construction and (2) point cloud simplification using this topographic knowledge for terrain modelling. The proposed approach is benchmarked against improved versions of existing methods to validate its capability and accuracy in digital elevation model construction and terrain derivative extraction. The results show that the simplified points of the TKPCS method can generate finer resolution terrain models with higher accuracy and greater information entropy. The good performance of the TKPCS method is also stable at different scales. This work endeavours to transform perceptive topographic knowledge into a process of point cloud simplification and can benefit future research related to terrain modelling. Numéro de notice : A2023-204 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/13658816.2023.2180801 Date de publication en ligne : 28/02/2023 En ligne : https://doi.org/10.1080/13658816.2023.2180801 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103138
in International journal of geographical information science IJGIS > vol 37 n° 5 (May 2023) . - pp 988 - 1008[article]Cross-guided pyramid attention-based residual hyperdense network for hyperspectral image pansharpening / Jiahui Qu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 11 (November 2022)
![]()
[article]
Titre : Cross-guided pyramid attention-based residual hyperdense network for hyperspectral image pansharpening Type de document : Article/Communication Auteurs : Jiahui Qu, Auteur ; Tongzhen Zhang, Auteur ; Wenqian Dong, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5543114 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image hyperspectrale
[Termes IGN] image panchromatique
[Termes IGN] lissage de données
[Termes IGN] pansharpening (fusion d'images)Résumé : (auteur) Hyperspectral (HS) image pansharpening is of great importance in improving the spatial resolution for many commercial platforms and remote sensing tasks. Convolutional neural network (CNN) has recently been applied in pansharpening. However, most existing CNN-based pansharpening models followed an early-fusion/late-fusion strategy, which integrates the low-level/high-level features of panchromatic (PAN) and HS streams at the input-output of the network. It is difficult to learn more complex combinations between PAN and HS streams. This article proposes a novel end-to-end residual hyperdense pansharpening network with a cross-guided pyramid attention (called RHDcgpaNet). The overall architecture of the proposed method is a residual hyperdense network, which extends the definition of dense connections to two-stream pansharpening problem. The proposed RHDcgpaNet allows guidance from the state of the preceding layers to all the layers in- between PAN and HS streams in a feed-forward manner, significantly increasing the learning representation. A cross-guided pyramid attention is designed and embedded to the proposed residual hyperdense network to yield more useful spatial–spectral feature transfer in network. Extensive experiments on widely used datasets demonstrate that the proposed RHDcgpaNet achieves favorable performance in comparison to the state-of-the-art methods. Numéro de notice : A2022-852 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1109/TGRS.2022.3220079 Date de publication en ligne : 07/11/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3220079 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102098
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 11 (November 2022) . - n° 5543114[article]A high-resolution panchromatic-multispectral satellite image fusion method assisted with building segmentation / Fang Gao in Computers & geosciences, vol 168 (November 2022)
![]()
[article]
Titre : A high-resolution panchromatic-multispectral satellite image fusion method assisted with building segmentation Type de document : Article/Communication Auteurs : Fang Gao, Auteur ; Yihui Li, Auteur ; Peng Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 105219 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bâtiment
[Termes IGN] filtre de Gauss
[Termes IGN] fusion d'images
[Termes IGN] image à haute résolution
[Termes IGN] image Jilin
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] image satellite
[Termes IGN] lissage de donnéesRésumé : (auteur) The main difficulty of panchromatic-multispectral image fusion is to balance the quality of spatial information and the spectral fidelity. Most of the practical fusion methods determine the optimal parameters based on the spatial and spectral characteristics of all original panchromatic and multispectral bands. However, for built-up and non-built-up areas (like cropland, forest) in one image, there may be large differences in their spatial and spectral characteristics, so their fused results are not optimal respectively with same parameters. To address above issues, this paper presents a high-resolution satellite image fusion method assisted with building segmentation. First, the proposed approach computes the average gradient and Gaussian filtering parameters of built-up and non-built-up areas separately according to the building segmentation results, on the basis of smoothing filter-based intensity modulation (SFIM). Then the intermediate data of two types of areas are computed in parallel and they are composited to obtain the final fused image, weighted by the pixel-wise “building factors” derived from the building segmentation results. Moreover, to better simulate the spatial characteristics of the multispectral image, we perform the “gradient simulation” operation to extract the gradient values in the multispectral image. Experimental results on Jilin-1 satellite images show that the proposed method provides competitive performance in spatial resolution, multispectral fidelity and quantity of information, as compared to the state-of-the-art methods in mainstream commercial software. Numéro de notice : A2022-721 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2022.105219 Date de publication en ligne : 11/09/2022 En ligne : https://doi.org/10.1016/j.cageo.2022.105219 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101657
in Computers & geosciences > vol 168 (November 2022) . - n° 105219[article]Estimating urban functional distributions with semantics preserved POI embedding / Weiming Huang in International journal of geographical information science IJGIS, vol 36 n° 10 (October 2022)
![]()
[article]
Titre : Estimating urban functional distributions with semantics preserved POI embedding Type de document : Article/Communication Auteurs : Weiming Huang, Auteur ; Lizhen Cui, Auteur ; Meng Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1905 - 1930 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] Chine
[Termes IGN] classe sémantique
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] distribution spatiale
[Termes IGN] échantillonnage
[Termes IGN] lissage de données
[Termes IGN] matrice de co-occurrence
[Termes IGN] Perceptron multicouche
[Termes IGN] point d'intérêt
[Termes IGN] triangulation de Delaunay
[Termes IGN] zone urbaineRésumé : (auteur) We present a novel approach for estimating the proportional distributions of function types (i.e. functional distributions) in an urban area through learning semantics preserved embeddings of points-of-interest (POIs). Specifically, we represent POIs as low-dimensional vectors to capture (1) the spatial co-occurrence patterns of POIs and (2) the semantics conveyed by the POI hierarchical categories (i.e. categorical semantics). The proposed approach utilizes spatially explicit random walks in a POI network to learn spatial co-occurrence patterns, and a manifold learning algorithm to capture categorical semantics. The learned POI vector embeddings are then aggregated to generate regional embeddings with long short-term memory (LSTM) and attention mechanisms, to take account of the different levels of importance among the POIs in a region. Finally, a multilayer perceptron (MLP) maps regional embeddings to functional distributions. A case study in Xiamen Island, China implements and evaluates the proposed approach. The results indicate that our approach outperforms several competitive baseline models in all evaluation measures, and yields a relatively high consistency between the estimation and ground truth. In addition, a comprehensive error analysis unveils several intrinsic limitations of POI data for this task, e.g. ambiguous linkage between POIs and functions. Numéro de notice : A2022-738 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/13658816.2022.2040510 Date de publication en ligne : 08/03/2022 En ligne : https://doi.org/10.1080/13658816.2022.2040510 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101714
in International journal of geographical information science IJGIS > vol 36 n° 10 (October 2022) . - pp 1905 - 1930[article]Can machine learning improve small area population forecasts? A forecast combination approach / Irina Grossman in Computers, Environment and Urban Systems, vol 95 (July 2022)
![]()
[article]
Titre : Can machine learning improve small area population forecasts? A forecast combination approach Type de document : Article/Communication Auteurs : Irina Grossman, Auteur ; Kasun Bandara, Auteur ; Tom Wilson, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101806 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse en composantes principales
[Termes IGN] apprentissage automatique
[Termes IGN] Australie
[Termes IGN] démographie
[Termes IGN] Extreme Gradient Machine
[Termes IGN] infrastructure
[Termes IGN] lissage de données
[Termes IGN] modèle de simulation
[Termes IGN] modèle empirique
[Termes IGN] Nouvelle-Zélande
[Termes IGN] planification stratégique
[Termes IGN] pondération
[Termes IGN] série temporelleRésumé : (auteur) Generating accurate small area population forecasts is vital for governments and businesses as it provides better grounds for decision making and strategic planning of future demand for services and infrastructure. Small area population forecasting faces numerous challenges, including complex underlying demographic processes, data sparsity, and short time series due to changing geographic boundaries. In this paper, we propose a novel framework for small area forecasting which combines proven demographic forecasting methods, an exponential smoothing based algorithm, and a machine learning based forecasting technique. The proposed forecasting combination contains four base models commonly used in demographic forecasting, a univariate forecasting model specifically suitable for forecasting yearly data, and a globally trained Light Gradient Boosting Model (LGBM) that exploits the similarities between a collection of population time series. In this study, three forecast combination techniques are investigated to weight the forecasts generated by these base models. We empirically evaluate our method, by preparing small area population forecasts for Australia and New Zealand. The proposed framework is able to achieve competitive results in terms of forecasting accuracy. Moreover, we show that the inclusion of the LGBM model always improves the accuracy of combination models on both datasets, relative to combination models which only include the demographic models. In particular, the results indicate that the proposed combination framework decreases the prevalence of relatively poor forecasts, while improving the reliability of small area population forecasts. Numéro de notice : A2022-374 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101806 Date de publication en ligne : 19/04/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101806 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100621
in Computers, Environment and Urban Systems > vol 95 (July 2022) . - n° 101806[article]Graph learning based on signal smoothness representation for homogeneous and heterogeneous change detection / David Alejandro Jimenez-Sierra in IEEE Transactions on geoscience and remote sensing, vol 60 n° 4 (April 2022)
PermalinkUncertainty estimation for stereo matching based on evidential deep learning / Chen Wang in Pattern recognition, vol 124 (April 2022)
PermalinkImproving the accuracy of spring phenology detection by optimally smoothing satellite vegetation index time series based on local cloud frequency / Jiaqi Tian in ISPRS Journal of photogrammetry and remote sensing, vol 180 (October 2021)
PermalinkComprehensive time-series analysis of bridge deformation using differential satellite radar interferometry based on Sentinel-1 / Matthias Schlögl in ISPRS Journal of photogrammetry and remote sensing, vol 172 (February 2021)
PermalinkObject detection using component-graphs and ConvNets with application to astronomical images / Thanh Xuan Nguyen (2021)
PermalinkReconnaissance spécifique et cartographie des arbres de la canopée en forêt tropicale en Guyane française par fusion de données lidar et hyperspectrales appliquées aux besoins de la gestion forestière / Anthony Laybros (2021)
PermalinkA lightweight ensemble spatiotemporal interpolation model for geospatial data / Shifen Cheng in International journal of geographical information science IJGIS, vol 34 n° 9 (September 2020)
PermalinkPansharpening: context-based generalized Laplacian pyramids by robust regression / Gemine Vivone in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
PermalinkRegion level SAR image classification using deep features and spatial constraints / Anjun Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 163 (May 2020)
PermalinkSmoothing and predicting celestial pole offsets using a Kalman filter and smoother / Jolanta Nastula in Journal of geodesy, Vol 94 n°3 (March 2020)
Permalink