Descripteur
Termes IGN > environnement > écologie > écosystème > biotope > milieu naturel > zone humide
zone humideVoir aussi |
Documents disponibles dans cette catégorie (215)



Etendre la recherche sur niveau(x) vers le bas
Heat wave-induced augmentation of surface urban heat islands strongly regulated by rural background / Shiqi Miao in Sustainable Cities and Society, vol 82 (July 2022)
![]()
[article]
Titre : Heat wave-induced augmentation of surface urban heat islands strongly regulated by rural background Type de document : Article/Communication Auteurs : Shiqi Miao, Auteur ; Wenfeng Zhan, Auteur ; Jiameng Lai, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103874 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] changement climatique
[Termes IGN] Chine
[Termes IGN] climat tropical
[Termes IGN] couvert végétal
[Termes IGN] densité de la végétation
[Termes IGN] données environnementales
[Termes IGN] forêt
[Termes IGN] humidité de l'air
[Termes IGN] ilot thermique urbain
[Termes IGN] image Terra-MODIS
[Termes IGN] nuit
[Termes IGN] température au sol
[Termes IGN] zone humide
[Termes IGN] zone ruraleRésumé : (auteur) The impact of heat waves (HWs) on surface urban heat islands (SUHIs) has been widely studied, but the spatial pattern of SUHI responsiveness to HWs across various climates remains unclear, and the influence of HW intensity on SUHI responsiveness has not been systematically quantified. Using MODIS land surface temperature data, here we investigated the responsiveness of SUHI to HWs (quantified as ∆I) as well as its variations with HW intensity in 354 cities in seven climate zones across China. We find that during HW periods, the SUHI and surface urban cool island are augmented in the humid and arid regions of China, respectively. The inter-city heterogeneity in rural vegetation coverage accounts for such a spatial pattern. In eastern China, the ∆I peaks in the north subtropical climate (0.72 ± 0.54 K for daytime and 0.29 ± 0.23 K for the nighttime) probably for its specific rural farming method. With the intensification of HWs, the augmentation effect can be further enhanced for the north subtropical, warm temperate, and arid temperate climates during the day and for almost all the climates at night. These findings can help advance the understanding of the responsiveness of SUHI to extreme climatic events. Numéro de notice : A2022-375 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.scs.2022.103874 Date de publication en ligne : 13/04/2022 En ligne : https://doi.org/10.1016/j.scs.2022.103874 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100624
in Sustainable Cities and Society > vol 82 (July 2022) . - n° 103874[article]The integration of multi-source remotely sensed data with hierarchically based classification approaches in support of the classification of wetlands / Aaron Judah in Canadian journal of remote sensing, vol 48 n° 2 (April 2022)
![]()
[article]
Titre : The integration of multi-source remotely sensed data with hierarchically based classification approaches in support of the classification of wetlands Type de document : Article/Communication Auteurs : Aaron Judah, Auteur ; Baoxin Hu, Auteur Année de publication : 2022 Article en page(s) : pp 158 - 181 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] classification bayesienne
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-TM
[Termes IGN] image Sentinel-SAR
[Termes IGN] intégration de données
[Termes IGN] modèle numérique de terrain
[Termes IGN] précision de la classification
[Termes IGN] tourbière
[Termes IGN] utilisation du sol
[Termes IGN] zone humideRésumé : (auteur) Methodologies were developed to classify wetlands (Open Bog, Treed Bog, Open Fen, Treed Fen, and Swamps) from remotely sensed data using advanced classification algorithms through two hierarchical approaches. The data utilized included multispectral optical and thermal data (Landsat-5, and Landsat-8), radar imagery (Sentinel-1), and a digital elevation model. Goals were to determine the best way to combine imagery to classify wetlands through hierarchically based classification approaches to produce more accurate and efficient maps compared to standard classification. Algorithms used were Random Forest (RF), and Naïve Bayes. A hierarchically based RF classification methodology produced the most accurate classification result (91.94%). The hierarchically based approaches also improved classification accuracies for low-quality data, as defined through feature analysis, when compared to a nonhierarchical classifier. The hierarchical approaches also produced a significant increase in classification accuracy for the Naïve Bayes classifier versus the standard approach (∼12% increase) while not significantly increasing computation time – comparable in accuracy to the RF tests for around 20% the computational effort. Preselection of spectral bands, polarizations and other input parameters (Normalized Difference Vegetation Index, Normalized Difference Water Index, albedo, slope, etc.) using log-normal or RF variable importance analysis was very effective at identifying low-quality features and features which were of higher quality. Numéro de notice : A2022-372 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/07038992.2021.1967732 Date de publication en ligne : 13/11/2021 En ligne : https://doi.org/10.1080/07038992.2021.1967732 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100614
in Canadian journal of remote sensing > vol 48 n° 2 (April 2022) . - pp 158 - 181[article]Age-dependence of stand biomass in managed boreal forests based on the Finnish National Forest Inventory data / Anna Repo in Forest ecology and management, vol 498 (15 October 2021)
![]()
[article]
Titre : Age-dependence of stand biomass in managed boreal forests based on the Finnish National Forest Inventory data Type de document : Article/Communication Auteurs : Anna Repo, Auteur ; Tuomas Rajala, Auteur ; Helena M. Henttonen, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 119507 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] âge du peuplement forestier
[Termes IGN] bilan du carbone
[Termes IGN] biomasse
[Termes IGN] changement climatique
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] gestion forestière
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modélisation de la forêt
[Termes IGN] puits de carbone
[Termes IGN] tourbière
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Information on carbon stocks and the rate of carbon accumulation is needed to harness the climate change mitigation potential of boreal forests. While previous studies have revealed general patterns and mechanisms for age-dependence of stand biomass, simple stand-level models that address the age-biomass relationship on average in managed boreal forests in different environmental conditions are largely missing. We developed models for the relationship between stand age and biomass by forest types on peatlands and mineral soils across climate zones in managed forests in Finland based on National Forest Inventory measurements from 1996 to 2018. In addition, we analyzed at which rate biomass accumulates when managed forest ages in different growth conditions. In northern Finland the maximum biomass change rate was one third, and the maximum biomass stock less than half of the corresponding values in sub-xeric heath forests on minerals soils in southern Finland. On drained peatlands the maximum biomass growth rate was approximately half, and on undrained peatlands one third of the maximum growth rate on mineral soils. On most fertile sites on mineral soils the maximum biomasses were three times larger than on the poorest sites. Correspondingly, the maximum biomass stock change rates were almost eight times faster on most fertile sites. In the example cases presented, the highest annual biomass change rates were achieved in young forests on average at the stand ages of 7–32 years, whereas the 95% of the maximum stock were reached on average in stands of 63–147 years. At the age of highest biomass growth rate stands contained 27–59% of the maximum biomass stocks. The developed models can be used in practical applications such as accounting of biogenic carbon in life-cycle assessments, mapping carbon, or creating simple predictions of biomass stock development in regions, or estimating the mitigation potential of afforestation and reforestation or estimating the magnitude of carbon offsets projects. Numéro de notice : A2021-659 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2021.119507 Date de publication en ligne : 30/07/2021 En ligne : https://doi.org/10.1016/j.foreco.2021.119507 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98398
in Forest ecology and management > vol 498 (15 October 2021) . - n° 119507[article]Automatic detection of inland water bodies along altimetry tracks for estimating surface water storage variations in the Congo basin / Frédéric Frappart in Remote sensing, vol 13 n° 19 (October-1 2021)
![]()
[article]
Titre : Automatic detection of inland water bodies along altimetry tracks for estimating surface water storage variations in the Congo basin Type de document : Article/Communication Auteurs : Frédéric Frappart, Auteur ; Pierre Zeiger, Auteur ; Julie Betbeder, Auteur ; Valéry Gond, Auteur ; Régis Bellot , Auteur ; Nicolas Baghdadi, Auteur ; Fabien Blarel, Auteur ; José Darrozes, Auteur ; Luc Bourrel, Auteur ; Frédérique Seyler, Auteur
Année de publication : 2021 Projets : TOSCA / Article en page(s) : n° 3804 Note générale : bibliographie
This research was funded by CNES TOSCA grants number CASCHMIR and SWHYM.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] classification par nuées dynamiques
[Termes IGN] Congo (bassin)
[Termes IGN] détection automatique
[Termes IGN] données altimétriques
[Termes IGN] eau de surface
[Termes IGN] estimation statistique
[Termes IGN] image Envisat-ASAR
[Termes IGN] image Jason-AMR
[Termes IGN] niveau de l'eau
[Termes IGN] série temporelle
[Termes IGN] stockage
[Termes IGN] volume d'eau
[Termes IGN] zone humideRésumé : (auteur) Surface water storage in floodplains and wetlands is poorly known from regional to global scales, in spite of its importance in the hydrological and the carbon balances, as the wet areas are an important water compartment which delays water transfer, modifies the sediment transport through sedimentation and erosion processes, and are a source for greenhouse gases. Remote sensing is a powerful tool for monitoring temporal variations in both the extent, level, and volume, of water using the synergy between satellite images and radar altimetry. Estimating water levels over flooded area using radar altimetry observation is difficult. In this study, an unsupervised classification approach is applied on the radar altimetry backscattering coefficients to discriminate between flooded and non-flooded areas in the Cuvette Centrale of Congo. Good detection of water (open water, permanent and seasonal inundation) is above 0.9 using radar altimetry backscattering from ENVISAT and Jason-2. Based on these results, the time series of water levels were automatically produced. They exhibit temporal variations in good agreement with the hydrological regime of the Cuvette Centrale. Comparisons against a manually generated time series of water levels from the same missions at the same locations show a very good agreement between the two processes (i.e., RMSE ≤ 0.25 m in more than 80%/90% of the cases and R ≥ 0.95 in more than 95%/75% of the cases for ENVISAT and Jason-2, respectively). The use of the time series of water levels over rivers and wetlands improves the spatial pattern of the annual amplitude of water storage in the Cuvette Centrale. It also leads to a decrease by a factor of four for the surface water estimates in this area, compared with a case where only time series over rivers are considered. Numéro de notice : A2021-935 Affiliation des auteurs : IGN+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13193804 Date de publication en ligne : 23/09/2021 En ligne : https://doi.org/10.3390/rs13193804 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99542
in Remote sensing > vol 13 n° 19 (October-1 2021) . - n° 3804[article]Application of feature selection methods and machine learning algorithms for saltmarsh biomass estimation using Worldview-2 imagery / Sikdar M. M. Rasel in Geocarto international, vol 36 n° 10 ([01/06/2021])
![]()
[article]
Titre : Application of feature selection methods and machine learning algorithms for saltmarsh biomass estimation using Worldview-2 imagery Type de document : Article/Communication Auteurs : Sikdar M. M. Rasel, Auteur ; Hsing-Chung Chang, Auteur ; Timothy J. Ralph, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1075-1099 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] bande spectrale
[Termes IGN] biomasse
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image multibande
[Termes IGN] image Worldview
[Termes IGN] marais salé
[Termes IGN] modèle de simulation
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] régression
[Termes IGN] variableRésumé : (Auteur) Assessing large scale plant productivity of coastal marshes is essential to understand the resilience of these systems to climate change. Two machine learning approaches, random forest (RF) and support vector machine (SVM) regression were tested to estimate biomass of a common saltmarshes species, salt couch grass (Sporobolus virginicus). Reflectance and vegetation indices derived from 8 bands of Worldview-2 multispectral data were used for four experiments to develop the biomass model. These four experiments were, Experiment-1: 8 bands of Worldview-2 image, Experiment-2: Possible combination of all bands of Worldview-2 for Normalized Difference Vegetation Index (NDVI) type vegetation indices, Experiment-3: Combination of bands and vegetation indices, Experiment-4: Selected variables derived from experiment-3 using variable selection methods. The main objectives of this study are (i) to recommend an affordable low cost data source to predict biomass of a common saltmarshes species, (ii) to suggest a variable selection method suitable for multispectral data, (iii) to assess the performance of RF and SVM for the biomass prediction model. Cross-validation of parameter optimizations for SVM showed that optimized parameter of ɛ-SVR failed to provide a reliable prediction. Hence, ν-SVR was used for the SVM model. Among the different variable selection methods, recursive feature elimination (RFE) selected a minimum number of variables (only 4) with an RMSE of 0.211 (kg/m2). Experiment-4 (only selected bands) provided the best results for both of the machine learning regression methods, RF (R2= 0.72, RMSE= 0.166 kg/m2) and SVR (R2= 0.66, RMSE = 0.200 kg/m2) to predict biomass. When a 10-fold cross validation of the RF model was compared with a 10-fold cross validation of SVR, a significant difference (p = Numéro de notice : A2021-367 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1624988 Date de publication en ligne : 11/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1624988 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97729
in Geocarto international > vol 36 n° 10 [01/06/2021] . - pp 1075-1099[article]Identifying the effects of chronic saltwater intrusion in coastal floodplain swamps using remote sensing / Elliott White Jr in Remote sensing of environment, vol 258 (June 2021)
PermalinkA GIS- and AHP-based approach to map fire risk: a case study of Kuan Kreng peat swamp forest, Thailand / Narissara Nuthammachot in Geocarto international, vol 36 n° 2 ([01/02/2021])
PermalinkDrought propagation and its impact on groundwater hydrology of wetlands: a case study on the Doode Bemde nature reserve (Belgium) / Buruk Kitachew Wossenyeleh in Natural Hazards and Earth System Sciences, vol 21 n° 1 (January 2021)
PermalinkPermalinkPermalinkBoreal peatland forests: ditch network maintenance effort and water protection in a forest rotation framework / Jenny Miettinen in Canadian Journal of Forest Research, vol 50 n° 10 (October 2020)
PermalinkMapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data / Yaotong Cai in International journal of applied Earth observation and geoinformation, vol 92 (October 2020)
PermalinkUncertainty of forested wetland maps derived from aerial photography / Stephen P. Prisley in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 10 (October 2020)
PermalinkWide-area near-real-time monitoring of tropical forest degradation and deforestation using Sentinel-1 / Dirk Hoekman in Remote sensing, vol 12 n° 19 (October-1 2020)
PermalinkLong time-series remote sensing analysis of the periodic cycle evolution of the inlets and ebb-tidal delta of Xincun Lagoon, Hainan Island, China / Huaguo Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 165 (July 2020)
Permalink