Descripteur



Etendre la recherche sur niveau(x) vers le bas
Space-time disease mapping by combining Bayesian maximum entropy and Kalman filter: the BME-Kalman approach / Bisong Hu in International journal of geographical information science IJGIS, vol 35 n° 3 (March 2021)
![]()
[article]
Titre : Space-time disease mapping by combining Bayesian maximum entropy and Kalman filter: the BME-Kalman approach Type de document : Article/Communication Auteurs : Bisong Hu, Auteur ; Pan Ning, Auteur ; Yi Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 466 - 489 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes descripteurs IGN] carte sanitaire
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] entropie maximale
[Termes descripteurs IGN] filtre de Kalman
[Termes descripteurs IGN] géostatistique
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] régressionRésumé : (auteur) In this work, a synthesis of the Bayesian maximum entropy (BME) and the Kalman filter (KF) methods, which enhances their individual strengths and overcomes certain of their weaknesses for spatiotemporal mapping purposes, is proposed in a spatiotemporal disease mapping context. The proposed BME-Kalman synthesis allows BME to use information from both parametric regression modeling and KF estimation leading to enhanced knowledge bases. The BME-Kalman synthetic approach is used to study the space-time incidence mapping of the hand, foot and mouth disease (HFMD) in Shandong province (China) during the period May 1st, 2008 to March 19th, 2009. The results showed that the BME-Kalman approach exhibited very good regressive and predictive accuracies, maintained a very good performance even during low-incidence and extremely low-incidence periods, offered an improved description of hierarchical disease characteristics compared to traditional mapping techniques, and provided a clear explanation of the spatial stratified incidence heterogeneity at unsampled locations. The BME-Kalman approach is versatile and flexible so that it can be modified and adjusted according to the needs of the application. Numéro de notice : A2021-165 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1795177 date de publication en ligne : 22/07/2021 En ligne : https://doi.org/10.1080/13658816.2020.1795177 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97098
in International journal of geographical information science IJGIS > vol 35 n° 3 (March 2021) . - pp 466 - 489[article]A dynamic bidirectional coupled surface flow model for flood inundation simulation / Chunbo Jiang in Natural Hazards and Earth System Sciences, Vol 21 n° 2 (February 2021)
![]()
[article]
Titre : A dynamic bidirectional coupled surface flow model for flood inundation simulation Type de document : Article/Communication Auteurs : Chunbo Jiang, Auteur ; Qi Zhou, Auteur ; Wangyang Yu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 497 - 515 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] crue
[Termes descripteurs IGN] inondation
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] modèle hydrographique
[Termes descripteurs IGN] prévention des risquesRésumé : (auteur) Flood disasters frequently threaten people and property all over the world. Therefore, an effective numerical model is required to predict the impacts of floods. In this study, a dynamic bidirectional coupled hydrologic–hydrodynamic model (DBCM) is developed with the implementation of characteristic wave theory, in which the boundary between these two models can dynamically adapt according to local flow conditions. The proposed model accounts for both mass and momentum transfer on the coupling boundary and was validated via several benchmark tests. The results show that the DBCM can effectively reproduce the process of flood propagation and also account for surface flow interaction between non-inundation and inundation regions. The DBCM was implemented for the floods simulation that occurred at Helin Town located in Chongqing, China, which shows the capability of the model for flood risk early warning and future management. Numéro de notice : A2021-168 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.5194/nhess-21-497-2021 date de publication en ligne : 03/02/2021 En ligne : https://doi.org/10.5194/nhess-21-497-2021 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97107
in Natural Hazards and Earth System Sciences > Vol 21 n° 2 (February 2021) . - pp 497 - 515[article]Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling / Stefanos Georganos in Geocarto international, vol 36 n° 2 ([01/02/2021])
![]()
[article]
Titre : Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling Type de document : Article/Communication Auteurs : Stefanos Georganos, Auteur ; Tais Grippa, Auteur ; Assane Niang Gadiaga, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 121 -1 36 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] autocorrélation spatiale
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] Dakar
[Termes descripteurs IGN] densité de population
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] hétérogénéité spatiale
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] population
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) Machine learning algorithms such as Random Forest (RF) are being increasingly applied on traditionally geographical topics such as population estimation. Even though RF is a well performing and generalizable algorithm, the vast majority of its implementations is still ‘aspatial’ and may not address spatial heterogenous processes. At the same time, remote sensing (RS) data which are commonly used to model population can be highly spatially heterogeneous. From this scope, we present a novel geographical implementation of RF, named Geographical Random Forest (GRF) as both a predictive and exploratory tool to model population as a function of RS covariates. GRF is a disaggregation of RF into geographical space in the form of local sub-models. From the first empirical results, we conclude that GRF can be more predictive when an appropriate spatial scale is selected to model the data, with reduced residual autocorrelation and lower Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) values. Finally, and of equal importance, GRF can be used as an effective exploratory tool to visualize the relationship between dependent and independent variables, highlighting interesting local variations and allowing for a better understanding of the processes that may be causing the observed spatial heterogeneity. Numéro de notice : A2021-080 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1595177 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1595177 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96822
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 121 -1 36[article]Dynamic mechanism of blown sand hazard formation at the Jieqiong section of the Lhasa–Shigatse railway / Shengbo Xie in Geomatics, Natural Hazards and Risk, vol 12 n° 1 (2021)
![]()
[article]
Titre : Dynamic mechanism of blown sand hazard formation at the Jieqiong section of the Lhasa–Shigatse railway Type de document : Article/Communication Auteurs : Shengbo Xie, Auteur ; Jianjun Qu, Auteur ; Yingjun Pang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 154 - 166 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] météorologie locale
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] prévention des risques
[Termes descripteurs IGN] risque naturel
[Termes descripteurs IGN] sable
[Termes descripteurs IGN] Tibet
[Termes descripteurs IGN] variation saisonnière
[Termes descripteurs IGN] vent de sable
[Termes descripteurs IGN] vitesse
[Termes descripteurs IGN] voie ferréeRésumé : (auteur) Blown sand hazards at the Jieqiong section of the Lhasa–Shigatse railway are severe, and their formation mechanism is unclear. Moreover, sand prevention and control work cannot be carried out. Therefore, the dynamic mechanism of blown sand at the Jieqiong section of the Lhasa–Shigatse Railway was investigated by field observation, laboratory analysis, and calculation. Results show that the yearly sand–moving wind at the Jieqiong section commonly originates from the SW direction. The yearly resultant drift direction and the yearly resultant angle of the maximum possible sand transport quantity are NE direction. The angle between railway trend and sand transport direction is 5°–30°. During dry season, sand materials are blown up by the wind, forming wind–sand flow and movement to the NE direction, at which they are blocked by the railway roadbed. Consequently, accumulation occurs and causes serious damage. Strong wind and dryness are synchronous within a season. The directions of sand source and prevailing wind are consistent, thereby aggravating the blown sand dynamic further. The present results provide a reference for controlling sand hazards in the locale. Numéro de notice : A2021-109 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475705.2020.1863268 date de publication en ligne : 28/12/2020 En ligne : https://doi.org/10.1080/19475705.2020.1863268 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96906
in Geomatics, Natural Hazards and Risk > vol 12 n° 1 (2021) . - pp 154 - 166[article]A hybrid approach for recovering high-resolution temporal gravity fields from satellite laser ranging / Anno Löcher in Journal of geodesy, vol 95 n° 1 (January 2021)
![]()
[article]
Titre : A hybrid approach for recovering high-resolution temporal gravity fields from satellite laser ranging Type de document : Article/Communication Auteurs : Anno Löcher, Auteur ; Jürgen Kusche, Auteur Année de publication : 2021 Article en page(s) : n° 6 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes descripteurs IGN] champ de pesanteur terrestre
[Termes descripteurs IGN] changement temporel
[Termes descripteurs IGN] données GRACE
[Termes descripteurs IGN] données TLS (télémétrie)
[Termes descripteurs IGN] facteur d'échelle
[Termes descripteurs IGN] fonction orthogonale
[Termes descripteurs IGN] harmonique sphérique
[Termes descripteurs IGN] modélisation
[Termes descripteurs IGN] série temporelleRésumé : (auteur) A new approach to recover time-variable gravity fields from satellite laser ranging (SLR) is presented. It takes up the concept of lumped coefficients by representing the temporal changes of the Earth’s gravity field by spatial patterns via combinations of spherical harmonics. These patterns are derived from the GRACE mission by decomposing the series of monthly gravity field solutions into empirical orthogonal functions (EOFs). The basic idea of the approach is then to use the leading EOFs as base functions in the gravity field modelling and to adjust the respective scaling factors straightforward within the dynamic orbit computation; only for the lowest degrees, the spherical harmonic coefficients are estimated separately. As a result, the estimated gravity fields have formally the same spatial resolution as GRACE. It is shown that, within the GRACE time frame, both the secular and the seasonal signals in the GRACE time series are reproduced with high accuracy. In the period prior to GRACE, the SLR solutions are in good agreement with other techniques and models and confirm, for instance, that the Greenland ice sheet was stable until the late 1990s. Further validation is done with the first monthly fields from GRACE Follow-On, showing a similar agreement as with GRACE itself. Significant differences to the reference data only emerge occasionally when zooming into smaller river basins with strong interannual mass variations. In such cases, the approach reaches its limits which are set by the low spectral sensitivity of the SLR satellites and the strong constraints exerted by the EOFs. The benefit achieved by the enhanced spatial resolution has to be seen, therefore, primarily in the proper capturing of the mass signal in medium or large areas rather than in the opportunity to focus on isolated spatial details. Numéro de notice : A2021-026 Affiliation des auteurs : non IGN Thématique : MATHEMATIQUE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01460-x date de publication en ligne : 23/12/2020 En ligne : https://doi.org/10.1007/s00190-020-01460-x Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96710
in Journal of geodesy > vol 95 n° 1 (January 2021) . - n° 6[article]Bioclimatic modeling of potential vegetation types as an alternative to species distribution models for projecting plant species shifts under changing climates / Robert E. Keane in Forest ecology and management, vol 477 ([01/12/2020])
PermalinkSemantic trajectory segmentation based on change-point detection and ontology / Yuan Gao in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
PermalinkAnalyzing the joint effect of forest management and wildfires on living biomass and carbon stocks in Spanish forests / Patricia Adame in Forests, vol 11 n°11 (November 2020)
PermalinkChallenges in flood modeling over data-scarce regions: how to exploit globally available soil moisture products to estimate antecedent soil wetness conditions in Morocco / El Mahdi El Khalk in Natural Hazards and Earth System Sciences, vol 20 n° 10 (October 2020)
PermalinkTowards dynamic forest trafficability prediction using open spatial data, hydrological modelling and sensor technology / Aura Salmivaara in Forestry, an international journal of forest research, vol 93 n° 5 (October 2020)
PermalinkA spatio-temporal method for crime prediction using historical crime data and transitional zones identified from nightlight imagery / Bo Yang in International journal of geographical information science IJGIS, vol 34 n° 9 (September 2020)
PermalinkNear-real time forecasting and change detection for an open ecosystem with complex natural dynamics / Jasper A. Slingsby in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkNovel communication channel model for signal propagation and loss through layered earth / David O. LeVan in IEEE Transactions on geoscience and remote sensing, vol 58 n° 8 (August 2020)
PermalinkLearning evolving user’s behaviors on location-based social networks / Ruizhi Wu in Geoinformatica [en ligne], vol 24 n° 3 (July 2020)
PermalinkUsing machine learning to synthesize spatiotemporal data for modelling DBH-height and DBH-height-age relationships in boreal forests / Jiaxin Chen in Forest ecology and management, Vol 466 (15 June 2020)
Permalink