Descripteur
Documents disponibles dans cette catégorie (374)



Etendre la recherche sur niveau(x) vers le bas
Global forecasting of ionospheric vertical total electron contents via ConvLSTM with spectrum analysis / Jinpei Chen in GPS solutions, vol 26 n° 3 (July 2022)
![]()
[article]
Titre : Global forecasting of ionospheric vertical total electron contents via ConvLSTM with spectrum analysis Type de document : Article/Communication Auteurs : Jinpei Chen, Auteur ; Nan Zhi, Auteur ; Haofan Liao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 69 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] analyse diachronique
[Termes IGN] analyse spectrale
[Termes IGN] apprentissage profond
[Termes IGN] carte ionosphérique mondiale
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] correction ionosphérique
[Termes IGN] modèle dynamique
[Termes IGN] positionnement par GNSS
[Termes IGN] temps de convergence
[Termes IGN] teneur verticale totale en électronsRésumé : (auteur) The widely used GNSS correction services for high precision positioning take advantage of accurate real-time TEC forecasting based on vertical total electron content (VTEC) maps. The methods for modeling and forecasting are mainly based on overly simplified assumptions, which in principle cannot reflect the real situations due to limitations of the mathematical formulations. Therefore, these methods cannot comprehensively capture the features of ionospheric TEC in spatial–temporal series. To overcome the problems caused by such assumptions, we combine ConvLSTM (convolutional long short-term memory) with spectrum analysis. The method allows the extraction of high-resolution spatial–temporal patterns of the ionospheric VTEC maps and accelerates the convergence time of neural networks. Extensive experiments have been carried out for short- and long-term forecasting and demonstrated that the performance of our method is better than other state-of-the-art models developed for various time series analysis methods. Based on the data from global ionospheric maps (GIMs) products, the results show that the root-mean-square error (RMSE) of global VTEC forecasting by our method substantially improves for two hours intervals over the years 2015, 2016, 2017 and 2019 compared to existing methods, specifically, 20–50% reduction on 1 or 2 h forecasting in terms of RMSE. In addition, the method is sufficient to support real-time forecasting since it takes less than one second to output global forecasting solutions. With these properties, we can facilitate real-time and highly accurate ionosphere correction services beneficial to numerous GNSS correct services and positioning terminals. Numéro de notice : A2022-378 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-022-01253-z Date de publication en ligne : 13/04/2022 En ligne : https://doi.org/10.1007/s10291-022-01253-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100638
in GPS solutions > vol 26 n° 3 (July 2022) . - n° 69[article]Detecting interchanges in road networks using a graph convolutional network approach / Min Yang in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)
![]()
[article]
Titre : Detecting interchanges in road networks using a graph convolutional network approach Type de document : Article/Communication Auteurs : Min Yang, Auteur ; Chenjun Jiang, Auteur ; Xiongfeng Yan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1119 - 1139 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse vectorielle
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification semi-dirigée
[Termes IGN] détection d'objet
[Termes IGN] échangeur routier
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] modélisation
[Termes IGN] noeud
[Termes IGN] Pékin (Chine)
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau routier
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Detecting interchanges in road networks benefit many applications, such as vehicle navigation and map generalization. Traditional approaches use manually defined rules based on geometric, topological, or both properties, and thus can present challenges for structurally complex interchange. To overcome this drawback, we propose a graph-based deep learning approach for interchange detection. First, we model the road network as a graph in which the nodes represent road segments, and the edges represent their connections. The proposed approach computes the shape measures and contextual properties of individual road segments for features characterizing the associated nodes in the graph. Next, a semi-supervised approach uses these features and limited labeled interchanges to train a graph convolutional network that classifies these road segments into an interchange and non-interchange segments. Finally, an adaptive clustering approach groups the detected interchange segments into interchanges. Our experiment with the road networks of Beijing and Wuhan achieved a classification accuracy >95% at a label rate of 10%. Moreover, the interchange detection precision and recall were 79.6 and 75.7% on the Beijing dataset and 80.6 and 74.8% on the Wuhan dataset, respectively, which were 18.3–36.1 and 17.4–19.4% higher than those of the existing approaches based on characteristic node clustering. Numéro de notice : A2022-404 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.2024195 Date de publication en ligne : 11/03/2022 En ligne : https://doi.org/10.1080/13658816.2021.2024195 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100716
in International journal of geographical information science IJGIS > vol 36 n° 6 (June 2022) . - pp 1119 - 1139[article]Natural disturbances risks in European boreal and temperate forests and their links to climate change : A review of modelling approaches / Joyce Machado Nunes Romeiro in Forest ecology and management, vol 509 (1 April 2022)
![]()
[article]
Titre : Natural disturbances risks in European boreal and temperate forests and their links to climate change : A review of modelling approaches Type de document : Article/Communication Auteurs : Joyce Machado Nunes Romeiro, Auteur ; Tron Eid, Auteur ; Clara Antón-Fernández, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 120071 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] changement climatique
[Termes IGN] dommage forestier causé par facteurs naturels
[Termes IGN] foresterie
[Termes IGN] forêt boréale
[Termes IGN] forêt tempérée
[Termes IGN] gelée
[Termes IGN] gestion forestière adaptative
[Termes IGN] incendie de forêt
[Termes IGN] maladie parasitaire
[Termes IGN] modèle de simulation
[Termes IGN] modélisation
[Termes IGN] risque naturel
[Termes IGN] Scolytinae
[Termes IGN] sécheresse
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) It is expected that European Boreal and Temperate forests will be greatly affected by climate change, causing natural disturbances to increase in frequency and severity. To detangle how, through forest management, we can make forests less vulnerable to the impact of natural disturbances, we need to include the risks of such disturbances in our decision-making tools. The present review investigates: i) how the most important forestry-related natural disturbances are linked to climate change, and ii) different modelling approaches that assess the risks of natural disturbances and their applicability for large-scale forest management planning. Global warming will decrease frozen soil periods, which increases root rot, snow, ice and wind damage, cascading into an increment of bark beetle damage. Central Europe will experience a decrease in precipitation and increase in temperature, which lowers tree defenses against bark beetles and increases root rot infestations. Ice and wet snow damages are expected to increase in Northern Boreal forests, and to reduce in Temperate and Southern Boreal forests. However, lack of snow cover may increase cases of frost-damaged seedlings. The increased temperatures and drought periods, together with a fuel increment from other disturbances, likely enhance wildfire risk, especially for Temperate forests. For the review of European modelling approaches, thirty-nine disturbance models were assessed and categorized according to their required input variables and to the models’ outputs. Probability models are usually common for all disturbance model approaches, however, models that predict disturbance effects seem to be scarce. Numéro de notice : A2022-190 Affiliation des auteurs : non IGN Thématique : FORET/MATHEMATIQUE Nature : Article DOI : 10.1016/j.foreco.2022.120071 Date de publication en ligne : 10/02/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120071 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99946
in Forest ecology and management > vol 509 (1 April 2022) . - n° 120071[article]Simulating future LUCC by coupling climate change and human effects based on multi-phase remote sensing data / Zihao Huang in Remote sensing, vol 14 n° 7 (April-1 2022)
![]()
[article]
Titre : Simulating future LUCC by coupling climate change and human effects based on multi-phase remote sensing data Type de document : Article/Communication Auteurs : Zihao Huang, Auteur ; Xuejian Li, Auteur ; Qiang Du, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1698 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] automate cellulaire
[Termes IGN] changement climatique
[Termes IGN] changement d'utilisation du sol
[Termes IGN] Chine
[Termes IGN] écosystème forestier
[Termes IGN] forêt tropicale
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] interaction homme-milieu
[Termes IGN] modèle de simulation
[Termes IGN] modèle dynamique
[Termes IGN] modèle numérique de surface
[Termes IGN] puits de carbone
[Termes IGN] simulation spatialeRésumé : (auteur) Future land use and cover change (LUCC) simulations play an important role in providing fundamental data to reveal the carbon cycle response of forest ecosystems to LUCC. Subtropical forests have great potential for carbon sequestration, yet their future dynamics under natural and human influences are unclear. Zhejiang Province in China is an important distribution area for subtropical forests. For forest management, it is of great significance to explore the future dynamic changes of subtropical forests in Zhejiang. As a popular LUCC spatial simulation model, the cellular automata (CA) model coupled with machine learning and LUCC quantitative demand models such as system dynamics (SD) can achieve effective LUCC simulation. Therefore, we first integrated a back propagation neural network (BPNN), a CA, and a SD model as a BPNN_CA_SD (BCS) coupled model for future LUCC simulation and then designed a slow development scenario (SD_Scenario), a harmonious development scenario (HD_Scenario), a baseline development scenario (BD_Scenario), and a fast development scenario (FD_Scenario), combining climate change and human disturbance. Thirdly, we obtained future land-use patterns in Zhejiang Province from 2014 to 2084 under multiple scenarios, and finally, we analyzed the temporal and spatial changes of land use and discussed the subtropical forest dynamics of the future. The results showed the following: (1) The overall accuracy was approximately 0.8, the kappa coefficient was 0.75, and the figure of merit (FOM) value was over 28% when using the BCS model to predict LUCC, indicating that the model could predict the consistent change of LUCC accurately. (2) The future evolution of the LUCC under different scenarios varied, with the growth of bamboo forests and the decline of coniferous forests in the FD_Scenario being prominent among the forest dynamics changes. Compared with 2014, the bamboo forest in 2084 will increase by 37%, while the coniferous forest will decrease by 25%. (3) Comparing the area and spatial change of the subtropical forests, the SD_Scenario was found to be beneficial for the forest ecology. These results can provide an important decision-making reference for land-use planning and sustainable forest development in Zhejiang Province. Numéro de notice : A2022-281 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14071698 Date de publication en ligne : 31/03/2022 En ligne : https://doi.org/10.3390/rs14071698 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100297
in Remote sensing > vol 14 n° 7 (April-1 2022) . - n° 1698[article]Investigating the role of wind disturbance in tropical forests through a forest dynamics model and satellite observations / E-Ping Rau (2022)
![]()
Titre : Investigating the role of wind disturbance in tropical forests through a forest dynamics model and satellite observations Type de document : Thèse/HDR Auteurs : E-Ping Rau, Auteur ; Jérôme Chave, Directeur de thèse Editeur : Toulouse : Université de Toulouse 3 Paul Sabatier Année de publication : 2022 Importance : 184 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse en vue de l'obtention du Doctorat de l'Université de Toulouse 3 Paul SabatierLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse forestière
[Termes IGN] canopée
[Termes IGN] chablis (sylviculture)
[Termes IGN] cyclone
[Termes IGN] forêt tropicale
[Termes IGN] Guyane française
[Termes IGN] image Sentinel-SAR
[Termes IGN] modèle dynamique
[Termes IGN] perturbation écologique
[Termes IGN] précipitation
[Termes IGN] risque naturel
[Termes IGN] sécheresse
[Termes IGN] traitement d'image radar
[Termes IGN] ventIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Natural disturbances have an important influence on the structure, composition and functioning of tropical forests and a role in the regulation of biogeochemical cycles. The frequency and intensity of natural disturbances are modified by climate change: a better knowledge of their mechanism of action is necessary to predict the consequences of this modification. Modeling allows us to evaluate the role of each of the ecological processes and their link with environmental factors. Remote sensing tools inform us about the structure and functioning of forests at large scales, and can be useful for the calibration and validation of vegetation models. In this thesis, I employed both approaches to examine how tropical forests are shaped by natural disturbances, particularly wind, which is a major disturbance factor in many tropical regions. First, I evaluated the transferability of a spatially explicit, individual-based model via sensitivity testing and calibration of global parameters. The model correctly predicts forest structure at two contrasting sites, and its response is consistent with variations in climate forcing. Calibration of a small number of key parameters was required, including the parameter controlling mortality and crown allometry. To investigate the sensitivity of the model to mortality, I implemented a wind damage module based on biophysical principles and coupled with wind speed to model forest responses to extreme wind events. With increasing disturbance level, canopy height decreased steadily but biomass showed a non-linear response. Wind intensity had a strong impact on canopy height and biomass, but not the frequency of extreme wind events. Finally, I tested whether radar data from Sentinel-1 satellites could be used to detect gaps due to natural disturbances in French Guiana. The Sentinel-1 data detected more natural gaps above 0.2 ha than the optical satellite data, and they showed a spatial pattern consistent with the optical images. The level of disturbance did not vary with altitude. We found more disturbance during dry seasons, which could be due to the delayed response of precipitation rather than the direct response of drought. In conclusion, this thesis demonstrates that the integration between modeling and remote sensing sheds light on the effects of natural disturbances on tropical forests. The resulting results can be used to study other types of disturbances and their interactions on a large scale. Note de contenu :
General introduction
General methods
CHAPTER 1: Transferability of an individual- and trait-based forest dynamics model: a test case across the tropics
1.1 Abstract
1.2 Introduction
1.3 Materials and methods
1.4 Results
1.5 Discussion
1.6 Acknowledgements and author contributions
1.7 Supplementary data
CHAPTER 2: Wind speed controls forest structure in subtropical forests exposed to cyclones: a case study using an individual-based model
2.1 Abstract
2.2 Introduction
2.3 Material and methods
2.4 Results
2.5 Discussion
2.6 Acknowledgments and author contributions
2.7 Supplementary data
CHAPTER 3: Detecting Natural Disturbances in Tropical Forests Using Sentinel-1 SAR Data: a Test in French Guiana
3.1 Abstract
3.2 Introduction
3.3 Methods
3.4 Results
3.5 Discussions
3.6 Acknowledgments and author contributions
3.7 Supplementary data
General discussion and conclusionsNuméro de notice : 26836 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Ecologie, biodiversité et évolution : Toulouse 3 Paul Sabatier : 2022 nature-HAL : Thèse DOI : sans Date de publication en ligne : 20/06/2022 En ligne : https://tel.archives-ouvertes.fr/tel-03699667/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101075 Calibration of cellular automata urban growth models from urban genesis onwards - a novel application of Markov chain Monte Carlo approximate Bayesian computation / Jingyan Yu in Computers, Environment and Urban Systems, vol 90 (November 2021)
PermalinkPermalinkA hybrid data model for dynamic GIS: application to marine geomorphological dynamics / Younes Hamdani in International journal of geographical information science IJGIS, vol 35 n° 8 (August 2021)
PermalinkDynamic optimization models for displaying outdoor advertisement at the right time and place / Meng Huang in International journal of geographical information science IJGIS, vol 35 n° 6 (June 2021)
PermalinkA compilation of snow cover datasets for Svalbard: A multi-sensor, multi-model study / Hannah Vickers in Remote sensing, vol 13 n°10 (May-2 2021)
PermalinkNumerical modelling for analysis of the effect of different urban green spaces on urban heat load patterns in the present and in the future / Tamás Gál in Computers, Environment and Urban Systems, vol 87 (May 2021)
PermalinkGeovisualization of COVID-19: State of the art and opportunities / Yu Lan in Cartographica, vol 56 n° 1 (Spring 2021)
PermalinkDynamic human body reconstruction and motion tracking with low-cost depth cameras / Kangkan Wang in The Visual Computer, vol 37 n° 3 (March 2021)
PermalinkSpace-time disease mapping by combining Bayesian maximum entropy and Kalman filter: the BME-Kalman approach / Bisong Hu in International journal of geographical information science IJGIS, vol 35 n° 3 (March 2021)
PermalinkA dynamic bidirectional coupled surface flow model for flood inundation simulation / Chunbo Jiang in Natural Hazards and Earth System Sciences, Vol 21 n° 2 (February 2021)
Permalink