Descripteur
Termes IGN > informatique > génie logiciel > logiciel > logiciel de calcul scientifique > Matlab
MatlabVoir aussi |
Documents disponibles dans cette catégorie (82)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A minimal solution for image-based sphere estimation / Tekla Tóth in International journal of computer vision, vol 131 n° 6 (June 2023)
[article]
Titre : A minimal solution for image-based sphere estimation Type de document : Article/Communication Auteurs : Tekla Tóth, Auteur ; Levente Hajder, Auteur Année de publication : 2023 Article en page(s) : pp 1428 - 1447 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de Levenberg-Marquardt
[Termes IGN] cône
[Termes IGN] ellipse
[Termes IGN] Matlab
[Termes IGN] reconstruction d'image
[Termes IGN] représentation géométrique
[Termes IGN] sphère
[Termes IGN] sphère paramétriqueRésumé : (auteur) We propose a novel minimal solver for sphere fitting via its 2D central projection, i.e., a special ellipse. The input of the presented algorithm consists of contour points detected in a camera image. General ellipse fitting problems require five contour points. However, taking advantage of the isotropic spherical target, three points are enough to define the tangent cone parameters of the sphere. This yields the sought ellipse parameters. Similarly, the sphere center can be estimated from the cone if the radius is known. These proposed geometric methods are rapid, numerically stable, and easy to implement. Experimental results—on synthetic, photorealistic, and real images—showcase the superiority of the proposed solutions to the state-of-the-art methods. A real-world LiDAR-camera calibration application justifies the utility of the sphere-based approach resulting in an error below a few centimeters. Numéro de notice : A2023-189 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11263-023-01766-1 Date de publication en ligne : 02/03/2023 En ligne : https://doi.org/10.1007/s11263-023-01766-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103061
in International journal of computer vision > vol 131 n° 6 (June 2023) . - pp 1428 - 1447[article]Validation of regional and global ionosphere maps from GNSS measurements versus IRI2016 during different magnetic activity / Ahmed Sedeek in Journal of applied geodesy, vol 16 n° 3 (July 2022)
[article]
Titre : Validation of regional and global ionosphere maps from GNSS measurements versus IRI2016 during different magnetic activity Type de document : Article/Communication Auteurs : Ahmed Sedeek, Auteur Année de publication : 2022 Article en page(s) : pp 229 - 240 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] Afrique du nord
[Termes IGN] données GNSS
[Termes IGN] harmonique sphérique
[Termes IGN] International Reference Ionosphere
[Termes IGN] interpolation
[Termes IGN] Matlab
[Termes IGN] modèle ionosphérique
[Termes IGN] station GNSS
[Termes IGN] teneur verticale totale en électronsRésumé : (auteur) This manuscript explores the divergence of the Vertical Total Electron Content (VTEC) estimated from Global Navigation Satellite System (GNSS) measurements using global, regional, and International Reference Ionosphere (IRI) models over low to high latitude regions during various magnetic activity. The VTEC is estimated using a territorial network consisting of 7 GNSS stations in Egypt and 10 GNSS stations from the International GNSS Service (IGS) Global network. The impact of magnetic activity on VTEC is investigated. Due to the deficiency of IGS receivers in north Africa and the shortage of GNSS measurements, an extra high interpolation is done to cover the deficit of data over North Africa. A MATLAB code was created to produce VTEC maps for Egypt utilizing a territorial network contrasted with global maps of VTEC, which are delivered by the Center for Orbit Determination in Europe (CODE). Thus we can have genuine VTEC maps estimated from actual GNSS measurements over any region of North Africa. A Spherical Harmonics Expansion (SHE) equation was modelled using MATLAB and called Local VTEC Model (LVTECM) to estimate VTEC values using observations of dual-frequency GNSS receivers. The VTEC calculated from GNSS measurement using LVTECM is compared with CODE VTEC results and IRI-2016 VTEC model results. The analysis of outcomes demonstrates a good convergence between VTEC from CODE and estimated from LVTECM. A strong correlation between LVTECM and CODE reaches about 96 % and 92 % in high and low magnetic activity, respectively. The most extreme contrasts are found to be 2.5 TECu and 1.3 TECu at high and low magnetic activity, respectively. The maximum discrepancies between LVTECM and IRI-2016 are 9.7 TECu and 2.3 TECu at a high and low magnetic activity. Variation in VTEC due to magnetic activity ranges from 1–5 TECu in moderate magnetic activity. The estimated VTEC from the regional network shows a 95 % correlation between the estimated VTEC from LVTECM and CODE with a maximum difference of 5.9 TECu. Numéro de notice : A2022-495 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1515/jag-2021-0046 Date de publication en ligne : 09/02/2022 En ligne : https://doi.org/10.1515/jag-2021-0046 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100985
in Journal of applied geodesy > vol 16 n° 3 (July 2022) . - pp 229 - 240[article]Production of optimum forest roads and comparison of these routes with current forest roads: a case study in Maçka, Turkey / Faruk Yildirim in Geocarto international, vol 37 n° 8 ([01/05/2022])
[article]
Titre : Production of optimum forest roads and comparison of these routes with current forest roads: a case study in Maçka, Turkey Type de document : Article/Communication Auteurs : Faruk Yildirim, Auteur ; Fatih Kadi, Auteur Année de publication : 2022 Article en page(s) : pp 2175 - 2197 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse comparative
[Termes IGN] carte forestière
[Termes IGN] chemin forestier
[Termes IGN] interface graphique
[Termes IGN] Matlab
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] recherche du chemin optimal, algorithme de
[Termes IGN] TurquieRésumé : (auteur) Forest roads are a basic necessity in forestry policies and should be planned by considering many factors. This study aims to generate optimum forest road routes and to compare them with current forest roads. First, FRNSM has been produced according to AHP, using nine factors for the study area. Then, risk statuses of the current forest roads are examined. According to results, 35% of the total forest road has high risk. A MATLAB-GUI based an application using optimal path algorithm developed for the second stage of the study has been produced. Using this application, optimum forest road routes have been produced for 11 pilot areas selected from the region. Generated routes have been compared with current forest roads in the region. It has been observed that generated routes in all areas are more suitable than current forest roads in terms of total length and average risk of suitability. Numéro de notice : A2022-504 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1818852 Date de publication en ligne : 22/09/2020 En ligne : https://doi.org/10.1080/10106049.2020.1818852 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101025
in Geocarto international > vol 37 n° 8 [01/05/2022] . - pp 2175 - 2197[article]Flood monitoring by integration of remote sensing technique and multi-criteria decision making method / Hadi Farhadi in Computers & geosciences, vol 160 (March 2022)
[article]
Titre : Flood monitoring by integration of remote sensing technique and multi-criteria decision making method Type de document : Article/Communication Auteurs : Hadi Farhadi, Auteur ; Ali Esmaeily, Auteur ; Mohammad Najafzadeh, Auteur Année de publication : 2022 Article en page(s) : n° 105045 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse multicritère
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] Electre
[Termes IGN] image Sentinel-MSI
[Termes IGN] inondation
[Termes IGN] Iran
[Termes IGN] Matlab
[Termes IGN] rapport signal sur bruit
[Termes IGN] surveillance hydrologiqueRésumé : (auteur) Traditional methodologies of flood monitoring are generally time-consuming and demanding tasks. In most cases, there is no possibility of flood monitoring in large areas. Due to the major drawbacks of conventional methods in flood detection of large districts, Remote Sensing (RS) has been efficiently employed as the best solution owing to its being synoptic view and cost-effective methodologies. One of the most challenging issues in RS technologies is choosing the optimal spectral bands to detect changes in the natural environment. In this research, Elimination and Choice Expressing Reality (ELECTRE), as one of the most widely used Multi-Criteria Decision Making (MCDM) techniques, was applied to select the optimal bands of Sentinel-2 satellite images for detection of flood-affected areas. For this purpose, the decision-making method was implemented during ten options and six criteria. The properties of the Sentinel-2 satellite images consisted of ten bands (with 10 and 20m spatial resolutions) and the criteria are the signal to noise ratio (SNR) related to sensor, standard deviation, variance, the SNR related to the bands, spatial resolution, and wavelength. Afterward, the ELECTRE technique was used to select six optimal bands among ten bands. The ELECTRE algorithm was programmed in MATLAB programming language that could make decisions with multiple options and multiple criteria. Furthermore, the Support Vector Machine (SVM) classification method, as one of the most powerful Machine Learning (ML) models, has been applied to classify the water bodies related to before and after the flood. According to the results of optimal bands classification, Overall Accuracy (OA) and Kappa Coefficient (KC) for the pre-flood classification were 93.65 percent and 0.923, respectively, and for the post-flood classification, the OA and KC values were 94.52 percent and 0.935 respectively. In the case of before and after flooding, the results of classification model for optimal bands had more accuracy levels in comparison with those obtained by original bands. Generally, it was found that the ELECTRE technique for selecting the best bands of Sentinel-2 satellite images and detection of flood-affected areas, in a short period of time with high accuracy, offers remarkable and consistent results. Numéro de notice : A2022-175 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2022.105045 Date de publication en ligne : 29/01/2022 En ligne : https://doi.org/10.1016/j.cageo.2022.105045 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99814
in Computers & geosciences > vol 160 (March 2022) . - n° 105045[article]Probabilistic unsupervised classification for large-scale analysis of spectral imaging data / Emmanuel Paradis in International journal of applied Earth observation and geoinformation, vol 107 (March 2022)
[article]
Titre : Probabilistic unsupervised classification for large-scale analysis of spectral imaging data Type de document : Article/Communication Auteurs : Emmanuel Paradis, Auteur Année de publication : 2022 Article en page(s) : n° 102675 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] analyse spectrale
[Termes IGN] classification barycentrique
[Termes IGN] classification ISODATA
[Termes IGN] classification non dirigée
[Termes IGN] classification par nuées dynamiques
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection de changement
[Termes IGN] entropie
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] Matlab
[Termes IGN] occupation du solRésumé : (auteur) Land cover classification of remote sensing data is a fundamental tool to study changes in the environment such as deforestation or wildfires. A current challenge is to quantify land cover changes with real-time, large-scale data from modern hyper- or multispectral sensors. A range of methods are available for this task, several of them being based on the k-means classification method which is efficient when classes of land cover are well separated. Here a new algorithm, called probabilistic k-means, is presented to solve some of the limitations of the standard k-means. It is shown that the new algorithm performs better than the standard k-means when the data are noisy. If the number of land cover classes is unknown, an entropy-based criterion can be used to select the best number of classes. The proposed new algorithm is implemented in a combination of R and C computer codes which is particularly efficient with large data sets: a whole image with more than 3 million pixels and covering more than 10,000 km2 can be analysed in a few minutes. Four applications with hyperspectral and multispectral data are presented. For the data sets with ground truth data, the overall accuracy of the probabilistic k-means was substantially improved compared to the standard k-means. One of these data sets includes more than 120 million pixels, demonstrating the scalability of the proposed approach. These developments open new perspectives for the large scale analysis of remote sensing data. All computer code are available in an open-source package called sentinel. Numéro de notice : A2022-193 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102675 Date de publication en ligne : 06/01/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102675 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99954
in International journal of applied Earth observation and geoinformation > vol 107 (March 2022) . - n° 102675[article]Fast local adaptive multiscale image matching algorithm for remote sensing image correlation / Niccolò Dematteis in Computers & geosciences, vol 159 (February 2022)PermalinkNew Fuzzy-AHP Matlab based graphical user interface (GUI) for a broad range of users: Sample applications in the environmental field / Meryem Tahri in Computers & geosciences, vol 158 (January 2022)PermalinkA multiagent systems with Petri Net approach for simulation of urban traffic networks / Mauricio Flores Geronimo in Computers, Environment and Urban Systems, vol 89 (September 2021)PermalinkThree-dimensional building change detection using object-based image analysis (case study: Tehran) / Fatemeh Tabib Mahmoudi in Applied geomatics, vol 13 n° 3 (September 2021)PermalinkJUST: MATLAB and python software for change detection and time series analysis / Ebrahim Ghaderpour in GPS solutions, vol 25 n° 3 (July 2021)PermalinkIdentifying urban neighborhoods with higher potential for social investment using GIS-FIS approach / Hossein Aghajani in Applied geomatics, vol 13 n° 1 (May 2021)PermalinkHyperspectral image denoising via clustering-based latent variable in variational Bayesian framework / Peyman Azimpour in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)PermalinkPermalinkEvaluation du stock de carbone aérien dans la végétation à partir de multiples observations satellites micro-ondes / Martin Cubaud (2021)PermalinkStereophotogrammetry for 2-D building deformation monitoring using Kalman Filter / J.O. Odumosu in Reports on geodesy and geoinformatics, vol 110 n° 1 (December 2020)Permalink