Descripteur
Documents disponibles dans cette catégorie (13)



Etendre la recherche sur niveau(x) vers le bas
Automatic detection of thin oil films on water surfaces in ultraviolet imagery / Ming Xie in Photogrammetric record, vol 38 n° 181 (March 2023)
![]()
[article]
Titre : Automatic detection of thin oil films on water surfaces in ultraviolet imagery Type de document : Article/Communication Auteurs : Ming Xie, Auteur ; Xiurui Zhang, Auteur ; Ying Li, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 47 - 62 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] détection automatique
[Termes IGN] filtre optique
[Termes IGN] hydrocarbure
[Termes IGN] image AVIRIS
[Termes IGN] marée noire
[Termes IGN] niveau de gris (image)
[Termes IGN] rayonnement ultraviolet
[Termes IGN] segmentation d'image
[Termes IGN] seuillage binaire
[Termes IGN] surface de la merRésumé : (auteur) Among the various remote sensing technologies that have been applied to monitor oil spills on the sea surface, passive ultraviolet (UV) imaging is a controversial one that has raised some disputes in the community of oil spill remote sensing. As a result, the research and applications of oil spill detection using passive UV imaging have not been as developed as other methods. In order to clarify some existing questions on oil spill detection using passive UV remote sensing technology, this paper discusses the needs of thin oil film detection, examines the feasibility of thin oil film detection using passive UV imaging through field experiments under controlled conditions and validates it with the UV imagery derived from the airborne visible/infrared imaging spectrometer (AVIRIS) observation of the Deepwater Horizon oil spill. Two types of fully automatic models are designed to extract the thin oil films on the water surface: (1) a binary classification model based on an adaptive threshold; (2) an unsupervised image segmentation model based on image clustering and greyscale histogram analysis. The two models are tested on the UV imagery obtained through both field experiments and AVIRIS observations. The results indicate that the binary classification model can extract the thin oil films with reasonable accuracy under stable imaging conditions, while the unsupervised image clustering model can robustly detect the thin oil films at the cost of higher computational complexity. These results infer that passive UV imaging is an effective way to detect thin oil films and could be applied to provide early warning at the beginning stage of oil spills and reduce further damage. It may also be applied as a supplementary method for oil spill detection to achieve comprehensive oil spill monitoring. Numéro de notice : A2023-163 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12439 Date de publication en ligne : 09/02/2023 En ligne : https://doi.org/10.1111/phor.12439 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102866
in Photogrammetric record > vol 38 n° 181 (March 2023) . - pp 47 - 62[article]Decision fusion of deep learning and shallow learning for marine oil spill detection / Junfang Yang in Remote sensing, vol 14 n° 3 (February-1 2022)
![]()
[article]
Titre : Decision fusion of deep learning and shallow learning for marine oil spill detection Type de document : Article/Communication Auteurs : Junfang Yang, Auteur ; Yi Ma, Auteur ; Yabin Hu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 666 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de fusion
[Termes IGN] analyse multiéchelle
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] hydrocarbure
[Termes IGN] image hyperspectrale
[Termes IGN] marée noire
[Termes IGN] milieu marin
[Termes IGN] pollution des mers
[Termes IGN] précision de la classification
[Termes IGN] sous ensemble flou
[Termes IGN] surveillance écologique
[Termes IGN] transformation en ondelettesRésumé : (auteur) Marine oil spills are an emergency of great harm and have become a hot topic in marine environmental monitoring research. Optical remote sensing is an important means to monitor marine oil spills. Clouds, weather, and light control the amount of available data, which often limit feature characterization using a single classifier and therefore difficult to accurate monitoring of marine oil spills. In this paper, we develop a decision fusion algorithm to integrate deep learning methods and shallow learning methods based on multi-scale features for improving oil spill detection accuracy in the case of limited samples. Based on the multi-scale features after wavelet transform, two deep learning methods and two classical shallow learning algorithms are used to extract oil slick information from hyperspectral oil spill images. The decision fusion algorithm based on fuzzy membership degree is introduced to fuse multi-source oil spill information. The research shows that oil spill detection accuracy using the decision fusion algorithm is higher than that of the single detection algorithms. It is worth noting that oil spill detection accuracy is affected by different scale features. The decision fusion algorithm under the first-level scale features can further improve the accuracy of oil spill detection. The overall classification accuracy of the proposed method is 91.93%, which is 2.03%, 2.15%, 1.32%, and 0.43% higher than that of SVM, DBN, 1D-CNN, and MRF-CNN algorithms, respectively. Numéro de notice : A2022-125 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14030666 Date de publication en ligne : 30/01/2022 En ligne : https://doi.org/10.3390/rs14030666 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99688
in Remote sensing > vol 14 n° 3 (February-1 2022) . - n° 666[article]A novel deep learning instance segmentation model for automated marine oil spill detection / Shamsudeen Temitope Yekeen in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
![]()
[article]
Titre : A novel deep learning instance segmentation model for automated marine oil spill detection Type de document : Article/Communication Auteurs : Shamsudeen Temitope Yekeen, Auteur ; Abdul‐Lateef Balogun, Auteur ; Khamaruzaman B. Wan Yusof, Auteur Année de publication : 2020 Article en page(s) : pp 190 - 200 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] hydrocarbure
[Termes IGN] image radar moirée
[Termes IGN] marée noire
[Termes IGN] segmentation sémantique
[Termes IGN] vision par ordinateur
[Termes IGN] zone d'intérêtRésumé : (auteur) The visual similarity of oil slick and other elements, known as look-alike, affects the reliability of synthetic aperture radar (SAR) images for marine oil spill detection. So far, detection and discrimination of oil spill and look-alike are still limited to the use of traditional machine learning algorithms and semantic segmentation deep learning models with limited accuracy. Thus, this study developed a novel deep learning oil spill detection model using computer vision instance segmentation Mask-Region-based Convolutional Neural Network (Mask R-CNN) model. The model training was conducted using transfer learning on the ResNet 101 on COCO as backbone in combination with Feature Pyramid Network (FPN) architecture for feature extraction at 30 epochs with 0.001 learning rate. Testing of the model was conducted using the least training and validation loss value on the withheld testing images. The model’s performance was evaluated using precision, recall, specificity, IoU, F1-measure and overall accuracy values. Ship detection and segmentation had the highest performance with overall accuracy of 98.3%. The model equally showed a higher accuracy for oil spill and look-alike detection and segmentation although oil spill detection outperformed look-alike with overall accuracy values of 96.6% and 91.0% respectively. The study concluded that the deep learning instance segmentation model performs better than conventional machine learning models and deep learning semantic segmentation models in detection and segmentation. Numéro de notice : A2020-548 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.07.011 Date de publication en ligne : 28/07/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.07.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95774
in ISPRS Journal of photogrammetry and remote sensing > vol 167 (September 2020) . - pp 190 - 200[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020091 RAB Revue Centre de documentation En réserve 3L Disponible 081-2020093 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2020092 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A novel nonlinear hyperspectral unmixing approach for images of oil spills at sea / Ying Li in International Journal of Remote Sensing IJRS, vol 41 n° 12 (20 - 30 March 2020)
![]()
[article]
Titre : A novel nonlinear hyperspectral unmixing approach for images of oil spills at sea Type de document : Article/Communication Auteurs : Ying Li, Auteur ; Huimin Lu, Auteur ; Zhenduo Zhang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 4684 - 4701 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] équation polynomiale
[Termes IGN] hydrocarbure
[Termes IGN] image hyperspectrale
[Termes IGN] marée noire
[Termes IGN] modèle non linéaire
[Termes IGN] pollution des mers
[Termes IGN] trigonométrieRésumé : (auteur) Hyperspectral remote sensing is currently being used to detect and monitor marine oil spills that cause damage to the environment. However, nonlinear interactions of oil and water make it difficult to extract their fractional abundances from the spectral response. Improving the modelling of nonlinear hyperspectral mixtures, which is required for a thorough and reliable characterization of the materials in an image, remains a challenging yet fundamental task. This study proposes a new model that combines polynomial and trigonometric systems to understand the nonlinear effects of oil and water spectral response. Although the model is nonlinear, unmixing is performed by solving a linear problem, thus allowing fast computation. Compared to classic polynomial models, the details of nonlinear interactions are better expressed and quantified, and the reconstruction accuracy and endmember abundance estimation are improved for both synthetic and real datasets. Both the polynomial and trigonometric parts of the model play important roles in characterizing nonlinearities, with statistically linear dependence areas covering more than 90% and 30%, respectively, in oil spill images sampled after the Deepwater Horizon explosion. Analysis of the experimental results suggests that the proposed model provides an efficient and accurate unmixing method that can be used to help design oil spill response plans. Numéro de notice : A2020-452 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431161.2020.1723179 Date de publication en ligne : 27/02/2020 En ligne : https://doi.org/10.1080/01431161.2020.1723179 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95540
in International Journal of Remote Sensing IJRS > vol 41 n° 12 (20 - 30 March 2020) . - pp 4684 - 4701[article]Progress in marine oil spill optical remote sensing: Detected targets, spectral response characteristics, and theories / Lu yingcheng in Marine geodesy, vol 36 n° 3 (September - November 2013)
![]()
[article]
Titre : Progress in marine oil spill optical remote sensing: Detected targets, spectral response characteristics, and theories Type de document : Article/Communication Auteurs : Lu yingcheng, Auteur ; Xiang Li, Auteur ; Qingjiu Tian, Auteur ; et al., Auteur Année de publication : 2013 Article en page(s) : pp 334 - 346 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] détection automatique
[Termes IGN] détection d'objet
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] marée noire
[Termes IGN] pollution des mers
[Termes IGN] réponse spectrale
[Termes IGN] volume (grandeur)Résumé : (Auteur) Different oil spill pollution types could be produced in oil transport and weathering processes. Investigation of these pollution types is beneficial for oil spill recovery and processing. Optical remote sensing techniques play an important role in marine oil spill monitoring and have the ability to identify different oil spill pollution types. Recently, research on oil spill optical remote sensing has made much progress in detecting targets, identifying spectral response characteristics, and formulating theories. Floating black oil, oil slicks, and oil-water mixture in marine oil spill accidents are the main targets to be investigated by optical remote sensors. The visible spectral response differences of these targets are the base of oil spill optical remote sensing research. Bi-directional reflectance distribution function, light interference, absorption, and scattering of targets produce different spectra. Therefore, oil spill optical remote sensing could be used to identify the main oil spill pollution types and estimate oil spill volume. Numéro de notice : A2013-713 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/01490419.2013.793633 Date de publication en ligne : 14/12/2009 En ligne : https://doi.org/10.1080/01490419.2013.793633 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32849
in Marine geodesy > vol 36 n° 3 (September - November 2013) . - pp 334 - 346[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 230-2013031 RAB Revue Centre de documentation En réserve 3L Disponible A multifrequency polarimetric SAR processing chain to observe oil fields in the Gulf of Mexico / M. Migliaccio in IEEE Transactions on geoscience and remote sensing, vol 49 n° 12 Tome 1 (December 2011)
PermalinkPotentiality of feed-forward neural networks for classifying dark formations to oil spills and look-alikes / Konstantinos Topouzelis in Geocarto international, vol 24 n° 3 (June - July 2009)
PermalinkMultisensor satellite monitoring of seawater state and oil pollution in the northeastern coastal zone of the Black Sea / S. Shcherbak in International Journal of Remote Sensing IJRS, vol 29 n° 21 (October 2008)
PermalinkAccès à l'information : expérimentation d'un nouvel outil / Benoit Chanavas in Info DFCI, n° 59 (décembre 2007)
PermalinkDetection and discrimination between oil spills and look-alike phenomena through neural networks / Konstantinos Topouzelis in ISPRS Journal of photogrammetry and remote sensing, vol 62 n° 4 (September 2007)
PermalinkDesign and implementation of a distributed GIS portal for oil spill and harmful algal bloom monitoring in the marine environment / E.O. Tuama in Marine geodesy, vol 30 n° 1-2 (March - June 2007)
PermalinkOil spill detection in Radarsat and Envisat SAR images / A.H. Solberg in IEEE Transactions on geoscience and remote sensing, vol 45 n° 3 (March 2007)
PermalinkPermalink