Descripteur
Documents disponibles dans cette catégorie (115)



Etendre la recherche sur niveau(x) vers le bas
Combination of Sentinel-1 and Sentinel-2 data for tree species classification in a Central European biosphere reserve / Michael Lechner in Remote sensing, vol 14 n° 11 (June-1 2022)
![]()
[article]
Titre : Combination of Sentinel-1 and Sentinel-2 data for tree species classification in a Central European biosphere reserve Type de document : Article/Communication Auteurs : Michael Lechner, Auteur ; Alena Dostalova, Auteur ; Markus Hollaus, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2687 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse comparative
[Termes IGN] analyse harmonique
[Termes IGN] Autriche
[Termes IGN] biosphère
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] espèce végétale
[Termes IGN] feuillu
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] nébulosité
[Termes IGN] phénologie
[Termes IGN] Pinophyta
[Termes IGN] rapport signal sur bruit
[Termes IGN] réserve forestièreRésumé : (auteur) Microwave and optical imaging methods react differently to different land surface parameters and, thus, provide highly complementary information. However, the contribution of individual features from these two domains of the electromagnetic spectrum for tree species classification is still unclear. For large-scale forest assessments, it is moreover important to better understand the domain-specific limitations of the two sensor families, such as the impact of cloudiness and low signal-to-noise-ratio, respectively. In this study, seven deciduous and five coniferous tree species of the Austrian Biosphere Reserve Wienerwald (105,000 ha) were classified using Breiman’s random forest classifier, labeled with help of forest enterprise data. In nine test cases, variations of Sentinel-1 and Sentinel-2 imagery were passed to the classifier to evaluate their respective contributions. By solely using a high number of Sentinel-2 scenes well spread over the growing season, an overall accuracy of 83.2% was achieved. With ample Sentinel-2 scenes available, the additional use of Sentinel-1 data improved the results by 0.5 percentage points. This changed when only a single Sentinel-2 scene was supposedly available. In this case, the full set of Sentinel-1-derived features increased the overall accuracy on average by 4.7 percentage points. The same level of accuracy could be obtained using three Sentinel-2 scenes spread over the vegetation period. On the other hand, the sole use of Sentinel-1 including phenological indicators and additional features derived from the time series did not yield satisfactory overall classification accuracies (55.7%), as only coniferous species were well separated. Numéro de notice : A2022-540 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14112687 Date de publication en ligne : 03/06/2022 En ligne : https://doi.org/10.3390/rs14112687 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101103
in Remote sensing > vol 14 n° 11 (June-1 2022) . - n° 2687[article]Framework for automatic coral reef extraction using Sentinel-2 image time series / Qizhi Zhang in Marine geodesy, vol 45 n° 3 (May 2022)
![]()
[article]
Titre : Framework for automatic coral reef extraction using Sentinel-2 image time series Type de document : Article/Communication Auteurs : Qizhi Zhang, Auteur ; Jian Zhang, Auteur ; Liang Cheng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 195 - 231 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Chine
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtrage de points
[Termes IGN] filtrage spatiotemporel
[Termes IGN] image Sentinel-MSI
[Termes IGN] mesure de similitude
[Termes IGN] nébulosité
[Termes IGN] récif corallien
[Termes IGN] série temporelleRésumé : (auteur) Using supervised and unsupervised classification on a single image to extract coral reef extent results in missing data and wrong extraction results. To improve the accuracy of coral reef extraction, this study proposes a novel technical framework for automatic coral reef extraction based on an image filtering strategy and spatiotemporal similarity measurements of pixel-level Sentinel-2 image time series. This method was applied to the Anda Reef, Daxian Reef, and Nanhua Reef, China, using 1464 Sentinel-2 images obtained from 2015–2020. Sentinel-2 images were automatically selected considering space, time, cloud cover, and image entropy after atmospheric correction. With the binary classification measurement standard using the digitization coral reef results of the Sentinel-2 images as the true value, the time series established by the modified normalized difference water index demonstrated high robustness and accuracy. Analyzing the time series curves of the coral reef and deep water verified that the spatiotemporal similarity measurement of this framework can stably extract the boundaries of the coral reef. Numéro de notice : A2022-353 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/01490419.2022.2051648 Date de publication en ligne : 28/03/2022 En ligne : https://doi.org/10.1080/01490419.2022.2051648 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100550
in Marine geodesy > vol 45 n° 3 (May 2022) . - pp 195 - 231[article]
Titre : Deep learning architectures for onboard satellite image analysis Type de document : Thèse/HDR Auteurs : Gaétan Bahl, Auteur ; Florent Lafarge, Directeur de thèse Editeur : Nice : Université Côte d'Azur Année de publication : 2022 Importance : 120 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse de Doctorat de l'Université Côte d’Azur, Spécialité InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage profond
[Termes IGN] contour
[Termes IGN] détection d'objet
[Termes IGN] extraction du réseau routier
[Termes IGN] forêt
[Termes IGN] image satellite
[Termes IGN] nuage
[Termes IGN] régression
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau neuronal récurrent
[Termes IGN] segmentation sémantiqueIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Les progrès des satellites d'observation de la Terre à haute résolution et la réduction des temps de revisite introduite par la création de constellations de satellites ont conduit à la création quotidienne de grandes quantités d'images (des centaines de Teraoctets par jour). Simultanément, la popularisation des techniques de Deep Learning a permis le développement d'architectures capables d'extraire le contenu sémantique des images. Bien que ces algorithmes nécessitent généralement l'utilisation de matériel puissant, des accélérateurs d'inférence IA de faible puissance ont récemment été développés et ont le potentiel d'être utilisés dans les prochaines générations de satellites, ouvrant ainsi la possibilité d'une analyse embarquée des images satellite. En extrayant les informations intéressantes des images satellite directement à bord, il est possible de réduire considérablement l'utilisation de la bande passante, du stockage et de la mémoire. Les applications actuelles et futures, telles que la réponse aux catastrophes, l'agriculture de précision et la surveillance du climat, bénéficieraient d'une latence de traitement plus faible, voire d'alertes en temps réel. Dans cette thèse, notre objectif est double : D'une part, nous concevons des architectures de Deep Learning efficaces, capables de fonctionner sur des périphériques de faible puissance, tels que des satellites ou des drones, tout en conservant une précision suffisante. D'autre part, nous concevons nos algorithmes en gardant à l'esprit l'importance d'avoir une sortie compacte qui peut être efficacement calculée, stockée, transmise au sol ou à d'autres satellites dans une constellation. Tout d'abord, en utilisant des convolutions séparables en profondeur et des réseaux neuronaux récurrents convolutionnels, nous concevons des réseaux neuronaux de segmentation sémantique efficaces avec un faible nombre de paramètres et une faible utilisation de la mémoire. Nous appliquons ces architectures à la segmentation des nuages et des forêts dans les images satellites. Nous concevons également une architecture spécifique pour la segmentation des nuages sur le FPGA d'OPS-SAT, un satellite lancé par l'ESA en 2019, et réalisons des expériences à bord à distance. Deuxièmement, nous développons une architecture de segmentation d'instance pour la régression de contours lisses basée sur une représentation à coefficients de Fourier, qui permet de stocker et de transmettre efficacement les formes des objets détectés. Nous évaluons la performance de notre méthode sur une variété de dispositifs informatiques à faible puissance. Enfin, nous proposons une architecture d'extraction de graphes routiers basée sur une combinaison de Fully Convolutional Networks et de Graph Neural Networks. Nous montrons que notre méthode est nettement plus rapide que les méthodes concurrentes, tout en conservant une bonne précision. Note de contenu : 1. Introduction
1.1 Context and motivation
1.2 Methods and Challenges
1.3 Contributions and outline
2. On-board image segmentation with compact networks
2.1 Introduction
2.2 Related works
2.3 Proposed architectures
2.4 Experiments on cloud segmentation
2.5 Experiments on forest segmentation
2.6 Conclusion
3. Recurrent convolutional networks for semantic segmentation
3.1 Introduction
3.2 Method
3.3 Experiments
3.4 Conclusion and future works
4. Regression of compact object contours
4.1 Introduction
4.2 Related Work
4.3 Method
4.4 Experiments
4.5 Conclusion
5. Road graph extraction
5.1 Introduction
5.2 Related Works
5.3 Method
5.4 Experiments
5.5 Limitations
5.6 Other uses of our method
5.7 Conclusion
6. Conclusion and Perspectives
6.1 Summary
6.2 Limitations and perspectives
6.3 Publications
6.4 Carbon Impact StatementNuméro de notice : 26912 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Côte d'Azur : 2022 Organisme de stage : Inria Sophia-Antipolis Méditerranée nature-HAL : Thèse DOI : sans Date de publication en ligne : 27/09/2022 En ligne : https://tel.archives-ouvertes.fr/tel-03789667v2/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101955 Snow cover change assessment in the upper Bhagirathi basin using an enhanced cloud removal algorithm / Mritunjay Kumar Singh in Geocarto international, vol 36 n° 20 ([01/12/2021])
![]()
[article]
Titre : Snow cover change assessment in the upper Bhagirathi basin using an enhanced cloud removal algorithm Type de document : Article/Communication Auteurs : Mritunjay Kumar Singh, Auteur ; Renoj J. Thayyen, Auteur ; Sanjay K. Jain, Auteur Année de publication : 2021 Article en page(s) : pp 2279 - 2302 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] analyse spatio-temporelle
[Termes IGN] bassin hydrographique
[Termes IGN] bilan de masse
[Termes IGN] changement climatique
[Termes IGN] eau de fonte
[Termes IGN] filtrage spatiotemporel
[Termes IGN] glacier
[Termes IGN] Himalaya
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Terra-MODIS
[Termes IGN] Inde
[Termes IGN] manteau neigeux
[Termes IGN] MNS ASTER
[Termes IGN] nébulosité
[Termes IGN] nuage
[Termes IGN] variation saisonnièreRésumé : (auteur) This research paper proposes a new five-step protocol to enhance the result of existing cloud removal algorithms using Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow cover products (SCPs). The study has been carried out for the upper Bhagirathi basin (up to Maneri Hydropower Project) located in the Western Himalaya. Gafurov and Bárdossy test employed to validate the performance of the proposed method, followed by comparing with the field observed snow cover duration (SCD) data. The result shows that the mean overall accuracy of the proposed method for cloud removal is about ∼95%. However, the cloud removal method by Gafurov and Bardossy also achieved similar mean overall accuracy but with the higher variability within the individual images as compared with the variability within the results obtained by the proposed method. SCD computed from cloud removed SCPs matched significantly with the field observed SCD for a point location, supporting the accuracy achieved by the cloud removal method. This study also examines the spatiotemporal variability of the snow cover in the study area during the past 18 years (2000–2018). During the observation period, no specific trend was observed for annual maximum snow cover, while yearly minimum snow cover in the basin showed an increasing trend since 2010. Seasonally, December and June month witnessed significant changes. December experienced a declining trend in snow cover between 3000–6000 m a.s.l. covering 88% of the basin area, whereas, June showed an increasing trend between 4500 to 6000 m (a.s.l.). This elevation range covers 61% of the basin area, including core 86% of the glacier area within the basin. September and October experienced the highest inter-annual snow cover variability. Maximum snow cover month of February and minimum snow cover month of August experienced the least variability. The present study suggests significant elevation-dependent increasing as well as the decreasing trend in the snow cover with seasonal contrast, which may affect the glaciers as well as the hydrological behavior of the basin. Numéro de notice : A2021-832 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1704069 Date de publication en ligne : 19/12/2021 En ligne : https://doi.org/10.1080/10106049.2019.1704069 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99005
in Geocarto international > vol 36 n° 20 [01/12/2021] . - pp 2279 - 2302[article]A parameterization of the cloud scattering polarization signal derived from GPM observations for microwave fast radative transfer models / Victoria Sol Galligani in IEEE Transactions on geoscience and remote sensing, vol 59 n° 11 (November 2021)
![]()
[article]
Titre : A parameterization of the cloud scattering polarization signal derived from GPM observations for microwave fast radative transfer models Type de document : Article/Communication Auteurs : Victoria Sol Galligani, Auteur ; Die Wang, Auteur ; Paola Belen Corales, Auteur ; Catherine Prigent, Auteur Année de publication : 2021 Article en page(s) : pp 8968 - 8977 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] image GPM
[Termes IGN] image radar
[Termes IGN] latitude
[Termes IGN] modèle atmosphérique
[Termes IGN] modèle de transfert radiatif
[Termes IGN] nuage
[Termes IGN] polarisation
[Termes IGN] prévision météorologique
[Termes IGN] radiomètre à hyperfréquence
[Termes IGN] reconstruction du signal
[Termes IGN] variation saisonnièreRésumé : (auteur) Microwave cloud polarized observations have shown the potential to improve precipitation retrievals since they are linked to the orientation and shape of ice habits. Stratiform clouds show larger brightness temperature (TB) polarization differences (PDs), defined as the vertically polarized TB (TBV) minus the horizontally polarized TB (TBH), with ~10 K PD values at 89 GHz due to the presence of horizontally aligned snowflakes, while convective regions show smaller PD signals, as graupel and/or hail in the updraft tend to become randomly oriented. The launch of the global precipitation measurement (GPM) microwave imager (GMI) has extended the availability of microwave polarized observations to higher frequencies (166 GHz) in the tropics and midlatitudes, previously only available up to 89 GHz. This study analyzes one year of GMI observations to explore further the previously reported stable relationship between the PD and the observed TBs at 89 and 166 GHz, respectively. The latitudinal and seasonal variability is analyzed to propose a cloud scattering polarization parameterization of the PD-TB relationship, capable of reconstructing the PD signal from simulated TBs. Given that operational radiative transfer (RT) models do not currently simulate the cloud polarized signals, this is an alternative and simple solution to exploit the large number of cloud polarized observations available. The atmospheric radiative transfer simulator (ARTS) is coupled with the weather research and forecasting (WRF) model, in order to apply the proposed parameterization to the RT simulated TBs and hence infer the corresponding PD values, which show to reproduce the observed GMI PDs well. Numéro de notice : A2021-886 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3049921 Date de publication en ligne : 02/02/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3049921 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98871
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 11 (November 2021) . - pp 8968 - 8977[article]Improving the accuracy of spring phenology detection by optimally smoothing satellite vegetation index time series based on local cloud frequency / Jiaqi Tian in ISPRS Journal of photogrammetry and remote sensing, vol 180 (October 2021)
PermalinkStochastic super-resolution for downscaling time-evolving atmospheric fields with a generative adversarial network / Jussi Leinonen in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 9 (September 2021)
PermalinkPermalinkMultisensor data fusion for cloud removal in global and all-season Sentinel-2 imagery / Patrick Ebel in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)
PermalinkG-band radar for humidity and cloud remote sensing / Ken B. Cooper in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkImproving the accuracy of land cover classification in cloud persistent areas using optical and radar satellite image time series / Maylis Lopes in Methods in ecology and evolution, vol 11 n° 4 (April 2020)
PermalinkDeep learning for multi-modal classification of cloud, shadow and land cover scenes in PlanetScope and Sentinel-2 imagery / Yuri Shendryk in ISPRS Journal of photogrammetry and remote sensing, vol 157 (November 2019)
PermalinkUnmanned aerial system multispectral mapping for low and variable solar irradiance conditions: Potential of tensor decomposition / Sheng Wang in ISPRS Journal of photogrammetry and remote sensing, vol 155 (September 2019)
PermalinkImproved algorithms for the measurement of total precipitable water and cloud liquid water from SARAL microwave radiometer observations / Rajput Neha Mangalsinh in Marine geodesy, vol 42 n° 4 (July 2019)
PermalinkChallenges in grassland mowing event detection with multimodal Sentinel images / Anatol Garioud (2019)
Permalink