Descripteur
Termes IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géographie physique > météorologie > température de surface
température de surfaceVoir aussi |
Documents disponibles dans cette catégorie (264)



Etendre la recherche sur niveau(x) vers le bas
Forest structure and fine root biomass influence soil CO2 efflux in temperate forests under drought / Antonios Apostolakis in Forests, vol 14 n° 2 (February 2023)
![]()
[article]
Titre : Forest structure and fine root biomass influence soil CO2 efflux in temperate forests under drought Type de document : Article/Communication Auteurs : Antonios Apostolakis, Auteur ; Ingo Schöning, Auteur ; Beate Michalzik, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 411 Langues : Anglais (eng) Descripteur : [Termes IGN] Allemagne
[Termes IGN] biomasse forestière
[Termes IGN] forêt tempérée
[Termes IGN] puits de carbone
[Termes IGN] qualité du sol
[Termes IGN] sécheresse
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] température au sol
[Termes IGN] teneur en carbone
[Termes IGN] teneur en eau de la végétation
[Vedettes matières IGN] Végétation et changement climatiqueNuméro de notice : A2023-165 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/f14020411 Date de publication en ligne : 17/12/2023 En ligne : https://doi.org/10.3390/f14020411 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102871
in Forests > vol 14 n° 2 (February 2023) . - n° 411[article]Geographic-dependent variational parameter estimation: A case study with a 2D ocean temperature model / Zhenyang Du in Journal of Marine Systems, vol 237 (January 2023)
![]()
[article]
Titre : Geographic-dependent variational parameter estimation: A case study with a 2D ocean temperature model Type de document : Article/Communication Auteurs : Zhenyang Du, Auteur ; Xuefeng Zhang, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] assimilation des données
[Termes IGN] estimation statistique
[Termes IGN] modèle océanographique
[Termes IGN] océanographie spatiale
[Termes IGN] température de surface de la mer
[Termes IGN] teneur en chaleur de l'océanRésumé : (auteur) Using observational information to tune uncertain physical parameters in an ocean model via a robust data assimilation method has great potential to reduce model bias and improve the quality of sea temperature analysis and prediction. However, how observational information should be used to optimize geographic-dependent parameters through four-dimensional variational (4DVAR) data assimilation, which is one of the most prevailing assimilation methods, has not been fully studied. In this study, a two-step 4DVAR method is proposed to enhance parameter correction when the assimilation model contains biased geographic-dependent parameters within a biased model framework. Here, the biased parameters are set to an oceanic eddy diffusion coefficient, Kv, that plays an important role in modulating synoptic, seasonal and long-term changes in ocean heat content. Within a twin assimilation experiment framework, the temperature “observations” generated from sampling a “truth” model are assimilated into a biased model to investigate to what extent Kv can be estimated using the 4DVAR method when Kv remains geographic-dependent. The results show that the geographic-dependent Kv distribution can be optimally estimated to further improve the sea temperature analysis performance compared with the state estimation only method. In addition, the model prediction performance is also discussed with optimally estimated parameters under various conditions of noisy and/or sparse ocean observations. These results provide some insights for the prediction of ocean temperature mixing and stratification in a 3D primitive ocean numerical model using 4DVAR data assimilation. Numéro de notice : A2023-080 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jmarsys.2022.103824 En ligne : https://doi.org/10.1016/j.jmarsys.2022.103824 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102716
in Journal of Marine Systems > vol 237 (January 2023)[article]How to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data / Rongfang Lyu in Sustainable Cities and Society, vol 88 (January 2023)
![]()
[article]
Titre : How to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data Type de document : Article/Communication Auteurs : Rongfang Lyu, Auteur ; Jili Pang, Auteur ; Xiaolei Tian, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 104287 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Chine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] espace vert
[Termes IGN] hauteur du bâti
[Termes IGN] ilot thermique urbain
[Termes IGN] image captée par drone
[Termes IGN] image Landsat-OLI
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] Leaf Area Index
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] optimisation (mathématiques)
[Termes IGN] paysage urbain
[Termes IGN] plan d'eau
[Termes IGN] planification urbaine
[Termes IGN] réseau bayesien
[Termes IGN] semis de points
[Termes IGN] température au solRésumé : (auteur) The systematical exploration of how two-dimensional (2D) and three-dimensional (3D) features of urban landscapes influence land surface temperature (LST) is still limited. Therefore, we investigated the influence of three main urban landscapes—urban green space, impervious land, and water bodies on LST, with a particular focus on the 3D vegetation metrics of green volume (GV) and leaf area index (LAI). We used Yinchuan City, China, as a case study. We quantified the impacts of various 2D/3D metrics of the three landscape types on LST using a random forest analysis with multiple sources, including Unmanned Aerial Vehicle (UAV) and remote sensing images. We then generated a Bayesian Network (BN) model to identify the optimal configurations for each landscape type. We found that using 11 of the 31 metrics considered, our model could explain 81.8% of the observed variance in LST of Yinchuan City. Among those, water body metrics were the most important, followed by vegetation abundance, impervious land metrics, and landscape pattern of urban green space. The mean classification error of the BN model was only 22.9%. We suggest that this makes the BN model a promising support tool for urban planning with a view to urban heat island mitigation. Our findings also stress the importance of considering both 2D and 3D features when considering urban cooling strategies. Numéro de notice : A2023-007 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1016/j.scs.2022.104287 Date de publication en ligne : 02/11/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104287 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102095
in Sustainable Cities and Society > vol 88 (January 2023) . - n° 104287[article]Tree diversity and identity modulate the growth response of thermophilous deciduous forests to climate warming / Giovanni Jacopetti in Oikos, vol 2023 n° inconnu (2023)
![]()
[article]
Titre : Tree diversity and identity modulate the growth response of thermophilous deciduous forests to climate warming Type de document : Article/Communication Auteurs : Giovanni Jacopetti, Auteur ; Federico Selvi, Auteur ; Filippo Bussotti, Auteur ; Martina Pollastrini, Auteur ; Tommaso Jucker, Auteur ; Olivier Bouriaud , Auteur
Année de publication : 2023 Projets : FunDivEUROPE / Article en page(s) : n ° e08875 Note générale : bibliographie
The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant 265171.Langues : Anglais (eng) Descripteur : [Termes IGN] cerne
[Termes IGN] croissance des arbres
[Termes IGN] forêt de feuillus
[Termes IGN] forêt thermophile
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] Italie
[Termes IGN] richesse floristique
[Termes IGN] sécheresse
[Termes IGN] température au sol
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Tree diversity and species identity are known to play an important role in modulating forest productivity and its capacity to buffer the effects of climatic events. The FunDivEurope exploratory platform allowed us to analyse this modulating effect in a medium-term time span, after an abrupt rise to a new stable level of the average summer temperature of ca 2°C, in Mediterranean forests in central Italy. This paper aims to answer the following questions: 1) did increasing temperature and drought events affect the growth of thermophilous deciduous forests? 2) Was this effect buffered in mixed stands compared to monocultures? 3) Did co-occurring tree species with different ecological characteristics, from more mesophilous to more xerophilous, have different responses? In 2012 and 2017, wood cores were collected from 659 trees in 36 plots representative of thermophilous deciduous forests. The selected tree species were Castanea sativa, Ostrya carpinifolia, Quercus cerris, Quercus ilex and Quercus petraea. In the sampling plots, they were present in pure stands and mixtures from two to four species. After measuring annual rings on cores, chronologies of basal area increment were built, and inventory data were used to estimate tree growth. Results showed a strong reduction of growth, lasting at least 18 years, after the temperature rise. Tree diversity significantly reduced the growth drop after the sudden and stable rise in summer average temperature. Tree mixture effect on growth stability appeared to be dependent on the tree species present in the mixture. Temperature rise and associated drought events, even without changes in rainfall, are one of the main challenges that European forests will face in the current scenarios of climate change. Tree diversity can buffer the effects of climate change over periods of at least 15 years and should be considered in forest management plans. Numéro de notice : A2023-070 Affiliation des auteurs : LIF+Ext (2020- ) Autre URL associée : archives Univ Florence Thématique : BIODIVERSITE/FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/oik.08875 Date de publication en ligne : 22/12/2022 En ligne : https://doi.org/10.1111/oik.08875 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102324
in Oikos > vol 2023 n° inconnu (2023) . - n ° e08875[article]Sea surface temperature prediction model for the Black Sea by employing time-series satellite data: a machine learning approach / Hakan Oktay Aydınlı in Applied geomatics, vol 14 n° 4 (December 2022)
![]()
[article]
Titre : Sea surface temperature prediction model for the Black Sea by employing time-series satellite data: a machine learning approach Type de document : Article/Communication Auteurs : Hakan Oktay Aydınlı, Auteur ; Ali Ekincek, Auteur ; Mervegül Aykanat-Atay, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 669 - 678 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] apprentissage automatique
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] détection de changement
[Termes IGN] données Copernicus
[Termes IGN] image Aqua-MODIS
[Termes IGN] méthode des moindres carrés
[Termes IGN] modèle de simulation
[Termes IGN] Noire, mer
[Termes IGN] optimisation (mathématiques)
[Termes IGN] série temporelle
[Termes IGN] température de surface de la merRésumé : (auteur) High temporal resolution remote sensing images provide continuous data about the marine environment, which is critical for gaining extensive knowledge about the aquatic environment and marine species. Sea surface temperature (SST) is one of the basic parameters that can be obtained with the help of remote sensing. Long-term alterations in the SST can affect the aquatic environment and marine species, such as the life expectancy of anchovies in the Black Sea. Forecasting the dynamics of SSTs is crucial for detecting and eliminating the SST-oriented impacts. The goal of the current study is to construct a predictive model to estimate the daily SST value for the mid-Black Sea using a machine learning approach by employing time-series satellite data from 2008 to 2021. Turkey’s mid-Black Sea coastal line, comprising Ordu, Samsun, and Sinop stations, was chosen as the study area. The SST predictive model was represented by applying the recurrent neural network (RNN) long- and short-term memory (LSTM). Adam stochastic optimization was used for validation, and the mean square error (MSE) for each location was found to be 0.914, 0.815, and 0.802, respectively. The findings indicate that our model is significantly promising for accurate and effective short- and midterm daily SST prediction. Numéro de notice : A2022-894 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s12518-022-00462-y Date de publication en ligne : 23/08/2022 En ligne : https://doi.org/10.1007/s12518-022-00462-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102242
in Applied geomatics > vol 14 n° 4 (December 2022) . - pp 669 - 678[article]The simulation and prediction of land surface temperature based on SCP and CA-ANN models using remote sensing data: A case study of Lahore / Muhammad Nasar Ahmad in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 12 (December 2022)
PermalinkModelling and accessing land degradation vulnerability using remote sensing techniques and the analytical hierarchy process approach / Abebe Debele Tolche in Geocarto international, vol 37 n° 24 ([20/10/2022])
PermalinkFeux de forêt : un drone traque les risques de reprise / Nathalie Da Cruz in Géomètre, n° 2205 (septembre 2022)
PermalinkAn investigation into heat storage by adopting local climate zones and nocturnal-diurnal urban heat island differences in the Tokyo Prefecture / Christopher O'Malley in Sustainable Cities and Society, vol 83 (August 2022)
PermalinkHeat wave-induced augmentation of surface urban heat islands strongly regulated by rural background / Shiqi Miao in Sustainable Cities and Society, vol 82 (July 2022)
PermalinkSynergistic use of the SRAL/MWR and SLSTR sensors on board Sentinel-3 for the wet tropospheric correction retrieval / Pedro Aguiar in Remote sensing, vol 14 n° 13 (July-1 2022)
PermalinkThe interrelationship between LST, NDVI, NDBI, and land cover change in a section of Lagos metropolis, Nigeria / Alfred S. Alademomi in Applied geomatics, vol 14 n° 2 (June 2022)
PermalinkVegetation cover mapping from RGB webcam time series for land surface emissivity retrieval in high mountain areas / Benedikt Hiebl in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
PermalinkThe role of blue green infrastructure in the urban thermal environment across seasons and local climate zones in East Africa / Xueqin Li in Sustainable Cities and Society, vol 80 (May 2022)
PermalinkDetecting and mapping drought severity using multi-temporal Landsat data in the uMsinga region of KwaZulu-Natal, South Africa / Shenelle Lottering in Geocarto international, vol 37 n° 6 ([01/04/2022])
Permalink