Descripteur
Termes descripteurs IGN > environnement > écologie > écosystème > biotope > milieu naturel > prairie
prairie
Commentaire :
Herbage, Prairie artificielle, Prairie naturelle, Prairie permanente, Prairie temporaire, Pré. Campagne. >> Pâturage, Écologie des prairies. >>Terme(s) spécifique(s) : Savane, Steppe, Pelouse. Equiv. LCSH : Grasslands, Meadows, Prairies. Voir aussi |



Etendre la recherche sur niveau(x) vers le bas
Topographic, edaphic and climate influences on aspen (Populus tremuloides) drought stress on an intermountain bunchgrass prairie / Andrew Neary in Forest ecology and management, vol 479 ([01/01/2021])
![]()
[article]
Titre : Topographic, edaphic and climate influences on aspen (Populus tremuloides) drought stress on an intermountain bunchgrass prairie Type de document : Article/Communication Auteurs : Andrew Neary, Auteur ; Ricardo Mata-González, Auteur ; Heidi Schmalz, Auteur Année de publication : 2021 Article en page(s) : 12 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] analyse de sensibilité
[Termes descripteurs IGN] climat
[Termes descripteurs IGN] écophysiologie
[Termes descripteurs IGN] état du sol
[Termes descripteurs IGN] facteur édaphique
[Termes descripteurs IGN] hauteur des arbres
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] manteau neigeux
[Termes descripteurs IGN] Oregon (Etats-Unis)
[Termes descripteurs IGN] Poaceae
[Termes descripteurs IGN] Populus tremuloides
[Termes descripteurs IGN] prairie
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] stress hydrique
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Quaking aspen, Populus tremuloides, has experienced severe declines in recent years in part due to the effects of changing climate and extreme drought. This study set out to investigate these effects by assessing associations of climatic, edaphic and topographic variables with physiological drought stress in aspen. The study took place on the Zumwalt Prairie in northeastern Oregon, a semi-arid bunchgrass prairie where aspen occur in isolated stands associated with riparian areas and late-season persistence of snow drifts. Using a 33-year time series of Landsat imagery to detect associations of aspen stands late-season snow cover and field measurements of soil moisture in aspen stands during 2017, we found while snow dominated stands were associated with greater soil moisture during spring, levels had equilibrated to those of other upland stands by summer. Measurements of predawn and midday stem Ψ in multiple height classes of aspen ramets revealed associations of both shallow soil moisture and vapor pressure deficit with physiological drought stress in aspen. Analysis of soil texture class revealed an important association with midday stem Ψ, with finer textured soils associated with decreased stem Ψ in comparison to coarser textured soils. While neither topographical characteristics nor snow cover were found to be important drivers of drought stress, topographical curvature was found to have a strong influence on summer soil moisture in upland stands. These findings contribute to our understanding of aspen physiology, drought ecology and landscape hydrology toward the xeric margin of aspen’s range. This information can help land managers anticipate and adapt to changing climates and understand their effects on key plant species such as aspen. Numéro de notice : A2021-001 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2020.118530 date de publication en ligne : 08/09/2020 En ligne : https://doi.org/10.1016/j.foreco.2020.118530 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96028
in Forest ecology and management > vol 479 [01/01/2021] . - 12 p.[article]Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data / Yaotong Cai in International journal of applied Earth observation and geoinformation, vol 92 (October 2020)
![]()
[article]
Titre : Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data Type de document : Article/Communication Auteurs : Yaotong Cai, Auteur ; Xinyu Li, Auteur ; Meng Zhang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 102164 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] algorithme de généralisation
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] cartographie thématique
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] filtre de déchatoiement
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] modélisation spatio-temporelle
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] prairie
[Termes descripteurs IGN] rétrodiffusion
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] zone humideRésumé : (auteur) Wetland ecosystems have experienced dramatic challenges in the past few decades due to natural and human factors. Wetland maps are essential for the conservation and management of terrestrial ecosystems. This study is to obtain an accurate wetland map using an object-based stacked generalization (Stacking) method on the basis of multi-temporal Sentinel-1 and Sentinel-2 data. Firstly, the Robust Adaptive Spatial Temporal Fusion Model (RASTFM) is used to get time series Sentinel-2 NDVI, from which the vegetation phenology variables are derived by the threshold method. Subsequently, both vertical transmit-vertical receive (VV) and vertical transmit-horizontal receive (VH) polarization backscatters (σ0 VV, σ0 VH) are obtained using the time series Sentinel-1 images. Speckle noise inherent in SAR data, resulting in over-segmentation or under-segmentation, can affect image segmentation and degrade the accuracies of wetland classification. Therefore, we segment Sentinel-2 multispectral images to delineate meaningful objects in this study. Then, in order to reduce data redundancy and computation time, we analyze the optimal feature combination using the Sentinel-2 multispectral images, Sentinel-2 NDVI time series, phenological variables and other vegetation index derived from Sentinel-2 multispectral images, as well as time series Sentinel-1 backscatters at the object level. Finally, the stacked generalization algorithm is utilized to extract the wetland information based on the optimal feature combination in the Dongting Lake wetland. The overall accuracy and Kappa coefficient of the object-based stacked generalization method are 92.46% and 0.92, which are 3.88% and 0.04 higher than that using the pixel-based method. Moreover, the object-based stacked generalization algorithm is superior to single classifiers in classifying vegetation of high heterogeneity areas. Numéro de notice : A2020-748 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2020.102164 date de publication en ligne : 07/06/2020 En ligne : https://doi.org/10.1016/j.jag.2020.102164 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96398
in International journal of applied Earth observation and geoinformation > vol 92 (October 2020) . - n° 102164[article]Prediction of plant diversity in grasslands using Sentinel-1 and -2 satellite image time series / Mathieu Fauvel in Remote sensing of environment, Vol 237 (February 2020)
![]()
[article]
Titre : Prediction of plant diversity in grasslands using Sentinel-1 and -2 satellite image time series Type de document : Article/Communication Auteurs : Mathieu Fauvel, Auteur ; Maylis Lopes, Auteur ; Titouan Dubo, Auteur ; Justine Rivers-Moore, Auteur ; Pierre-Louis Frison , Auteur ; Nicolas Gross, Auteur ; Annie Ouin, Auteur
Année de publication : 2020 Projets : SEBIOREF / Ouin, Annie Article en page(s) : 13 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] biodiversité végétale
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] Haute-Garonne (31)
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image RapidEye
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] indice de diversité
[Termes descripteurs IGN] indice de végétation
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] prairie
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] taxinomieRésumé : (auteur) The prediction of grasslands plant diversity using satellite image time series is considered in this article. Fifteen months of freely available Sentinel optical and radar data were used to predict taxonomic and functional diversity at the pixel scale (10 m × 10 m) over a large geographical extent (40,000 km2). 415 field measurements were collected in 83 grasslands to train and validate several statistical learning methods. The objective was to link the satellite spectro-temporal data to the plant diversity indices. Among the several diversity indices tested, Simpson and Shannon indices were best predicted with a coefficient of determination around 0.4 using a Random Forest predictor and Sentinel-2 data. The use of Sentinel-1 data was not found to improve significantly the prediction accuracy. Using the Random Forest algorithm and the Sentinel-2 time series, the prediction of the Simpson index was performed. The resulting map highlights the intra-parcel variability and demonstrates the capacity of satellite image time series to monitor grasslands plant taxonomic diversity from an ecological viewpoint. Numéro de notice : A2020-004 Affiliation des auteurs : UPEM-LaSTIG+Ext (2016-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2019.111536 date de publication en ligne : 26/11/2019 En ligne : https://doi.org/10.1016/j.rse.2019.111536 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94296
in Remote sensing of environment > Vol 237 (February 2020) . - 13 p.[article]On the joint exploitation of optical and SAR satellite imagery for grassland monitoring / Anatol Garioud (2020)
![]()
Titre : On the joint exploitation of optical and SAR satellite imagery for grassland monitoring Type de document : Article/Communication Auteurs : Anatol Garioud , Auteur ; Silvia Valero, Auteur ; Sébastien Giordano
, Auteur ; Clément Mallet
, Auteur
Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2020 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. XLIII-B3-2020 Projets : 1-Pas de projet / Conférence : ISPRS 2020, Commission 3, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Archives Commission 3 Importance : pp 591 - 598 Format : 21 x 30 cm Note générale : bibliographie
This research has been funded by the Agence pour le Développement Et la Maîtrise de l’Energie (ADEME) and the Centre National d’Etudes Spatiales (CNES).Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] prairie
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surveillance de la végétationRésumé : (auteur) Time series of optical and Synthetic Aperture RADAR (SAR) images provide complementary knowledge about the cover and use of the Earth surface since they exhibit information of distinct physical nature. They have proved to be particularly relevant for monitoring large areas with high temporal dynamics and related to significant ecosystem services. Grasslands are such crucial surfaces, both in terms of economic and environmental issues and the automatic and frequent monitoring of their agricultural practices is required for many purposes. To address this problem, the deep-based SenDVI framework is presented. SenDVI proposes an object-based methodology to estimate NDVI values from Sentinel-1 SAR observations and contextual knowledge (weather, terrain). Values are regressed every 6 days for compliance with monitoring purposes. Very satisfactory results are obtained with this low-level multimodal fusion strategy (R 2 =0.84 on a Sentinel-2 tile). Finer analysis is however required to fully assess the relevance of each modality (Sentinel-1, Sentinel-2, weather, terrain) and feature sets and to propose the simplest conceivable framework. Results show that not all features are necessary and can be discarded while others have a mandatory contribution to the regression task. Moreover, experiments prove that accuracy can be improved by not saturating the network with non-essential information (among contextual knowledge in particular). This allows to move towards more operational solution. Numéro de notice : C2020-004 Affiliation des auteurs : UGE-LaSTIG (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B3-2020-591-2020 date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-591-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95664 Change detection work-flow for mapping changes from arable lands to permanent grasslands with advanced boosting methods / Jiří Šandera in Geodetski vestnik, vol 63 n° 3 (September - November 2019)
![]()
[article]
Titre : Change detection work-flow for mapping changes from arable lands to permanent grasslands with advanced boosting methods Type de document : Article/Communication Auteurs : Jiří Šandera, Auteur ; Přemysl Štych, Auteur Année de publication : 2019 Article en page(s) : pp 379 - 394 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse diachronique
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] boosting adapté
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] chaîne de traitement
[Termes descripteurs IGN] changement d'occupation du sol
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] image Landsat
[Termes descripteurs IGN] prairie
[Termes descripteurs IGN] terre arableRésumé : (Auteur) The necessity of mapping changes in land cover categories based on satellite imageries is a challenging task especially in terms of arable land and grasslands. The phenological phases of arable lands change quickly while grasslands is more stable. It might be hard to capture these changes regarding the spectral overlap between crops in full growth and grass itself. We have introduced a relatively simple processing workflow with good efficiency and accuracy. Our proposed method utilises the combination of a Multivariate Alteration Change Detection Algorithm and an existing boosting method, such as the AdaBoost algorithm with different weak learners and the most recent one – Extreme Gradient Boosting that is actually a relatively new approach in remote sensing. According to the results, the highest overall accuracy is 89.51 %. The proposed process workflow was tested on Landsat data with 30 m spatial resolution, using open-source software: R and GRASS GIS, Orfeo Toolbox library. Numéro de notice : A2019-501 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.15292/geodetski-vestnik.2019.03.379-394 En ligne : http://dx.doi.org/10.15292/geodetski-vestnik.2019.03.379-394 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93783
in Geodetski vestnik > vol 63 n° 3 (September - November 2019) . - pp 379 - 394[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 139-2019031 SL Revue Centre de documentation Revues en salle Disponible Land-cover change in the Wulagai grassland, Inner Mongolia of China between 1986 and 2014 analysed using multi-temporal Landsat images / Temulun Tangud in Geocarto international, vol 34 n° 11 ([15/08/2019])
PermalinkEvaluating the potential of the red edge channel for C3 (Festuca spp.) grass discrimination using Sentinel-2 and Rapid Eye satellite image data / Charles Otunga in Geocarto international, vol 34 n° 10 ([15/07/2019])
PermalinkA novel method for separating woody and herbaceous time series / Qiang Zhou in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 7 (July 2019)
PermalinkChallenges in grassland mowing event detection with multimodal Sentinel images / Anatol Garioud (2019)
PermalinkJoint analysis of SAR and optical satellite images time series for grassland event detection / Anatol Garioud (2019)
PermalinkMicrowave indices from active and passive sensors for remote sensing applications / Emanuele Santi (2019)
PermalinkPermalinkEstimating forest standing biomass in savanna woodlands as an indicator of forest productivity using the new generation WorldView-2 sensor / Timothy Dube in Geocarto international, vol 33 n° 2 (February 2018)
PermalinkEstimation of forest aboveground biomass from HJ1B imagery using a canopy reflectance model and a forest growth model / Xinyun Wang in Geocarto international, vol 33 n° 2 (February 2018)
PermalinkPermalinkMapping grassland management intensity using Sentinel-2 satellite data / Marijke Elisabeth Bekkema in GI Forum, vol 2018 n° 1 ([01/01/2018])
PermalinkSuivi écologique des prairies semi-naturelles : analyse statistique de séries temporelles denses d’images satellite à haute résolution spatiale / Maylis Lopes (2018)
PermalinkRemote sensing of species diversity using Landsat 8 spectral variables / Sabelo Madonsela in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)
PermalinkImproving the prediction of African savanna vegetation variables using time series of MODIS products / Miriam Tsalyuk in ISPRS Journal of photogrammetry and remote sensing, vol 131 (September 2017)
PermalinkReducing classification error of grassland overgrowth by combing low-density lidar acquisitions and optical remote sensing data / Timo P Pitkänen in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
PermalinkRetrieving grassland canopy water content by considering the information from neighboring pixels / Binbin He in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 8 (August 2017)
PermalinkChange detection in forests and savannas using statistical analysis based on geographical objects / Lucilia Rezende Leite in Boletim de Ciências Geodésicas, vol 23 n° 2 (abr - jun 2017)
PermalinkPermalinkLes prairies de l’estuaire de la Loire : étude de la dynamique de la végétation de 1982 à 2014 / Mathieu Le Dez in Mappemonde [en ligne], n° 119 (janvier 2017)
PermalinkExposure-related forest-steppe: A diverse landscape type determined by topography and climate / Martin Hais in Journal of Arid Environments, vol 135 (December 2016)
PermalinkPlant community mycorrhization in temperate forests and grasslands: relations with edaphic properties and plant diversity / Maret Gerz in Journal of vegetation science, vol 27 n° 1 (January 2016)
PermalinkUAS Experiences in Africa / Marius Schrôder in GIM international [en ligne], vol 29 n° 12 (December 2015)
PermalinkLand cover changes assessment using object-based image analysis in the Binah River watershed (Togo and Benin) / Hèou Maléki Badjana in Earth and space science, vol 2 n° 10 (October 2015)
PermalinkRegional dynamics of terrestrial vegetation productivity and climate feedbacks for territory of Ukraine / Dmytro Movchan in International journal of geographical information science IJGIS, vol 29 n° 8 (August 2015)
PermalinkUnderstanding the effects of ALS pulse density for metric retrieval across diverse forest types / Phil Wilkes in Photogrammetric Engineering & Remote Sensing, PERS, vol 81 n° 8 (August 2015)
PermalinkSavannah woody structure modelling and mapping using multi-frequency (X-, C- and L-band) Synthetic Aperture Radar data / Laven Naidoo in ISPRS Journal of photogrammetry and remote sensing, vol 105 (July 2015)
PermalinkExploring life forms for linking orthopteran assemblage and grassland plant community / Rocco Labadessa in Hacquetia, vol 14 n° 1 (June 2015)
PermalinkSurfaces d'intérêts écologiques : mise à jour / Emmanuelle Raulin in La Vendée agricole, vol 2015 n° 12 (20 mars 2015)
PermalinkEmploying ground and satellite-based QuickBird data and Random forest to discriminate five tree species in a Southern African Woodland / Samuel Adelabu in Geocarto international, vol 30 n° 3 - 4 (March - April 2015)
PermalinkLand-use and land tenure explain spatial and temporal patterns in terrestrial net primary productivity (NPP) in Southern Africa / Godfrey Pachavo in Geocarto international, vol 29 n° 5 - 6 (August - October 2014)
PermalinkLandscape metrics for analysing urbanization-induced land use and land cover changes / Hua Liu in Geocarto international, vol 28 n° 7-8 (November - December 2013)
PermalinkA semi-ellipsoid-model based fuzzy classifier to map grassland in Inner Mongolia, China / Hai Lan in ISPRS Journal of photogrammetry and remote sensing, vol 85 (November 2013)
PermalinkNon-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data / Abel Ramoelo in ISPRS Journal of photogrammetry and remote sensing, vol 82 (August 2013)
PermalinkThe spatial prediction of tree species diversity in savanna woodlands of Southern Africa / G. Mutowo in Geocarto international, vol 27 n° 8 (December 2012)
PermalinkA robust signal preprocessing chain for small-footprint waveform LiDAR / J. Wu in IEEE Transactions on geoscience and remote sensing, vol 50 n° 8 (August 2012)
PermalinkApplication of time series Landsat images to examining land-use / land-cover dynamic change / Dong Lu in Photogrammetric Engineering & Remote Sensing, PERS, vol 78 n° 7 (July 2012)
PermalinkClassification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment / Laven Naidoo in ISPRS Journal of photogrammetry and remote sensing, vol 69 (April 2012)
PermalinkDes structures paysagères à la dynamique des feux : Essai de typologie régionale des campagnes pyrophiles de l’ouest du Burkina Faso / S. Caillault in Revue internationale de géomatique, vol 21 n° 3 (septembre - novembre 2011)
PermalinkInventorying management status and plant species richness in seminatural grasslands using high spatial resolution imagery / K. Hall in Applied Vegetation Science, vol 13 n° 2 (April 2010)
PermalinkBiodiversité floristique, entomologique et ornithologique des vallées alluviales de Champagne-Ardenne / Alain Berthelot (2010)
PermalinkPermalinkHow do trees affect spatio-temporal heterogeneity of nutrient cycling in mediterranean annual grasslands? / Guillermo Gea-Izquierdo in Annals of Forest Science, vol 67 n° 1 (January-February 2010)
PermalinkPermalinkDevelopment of alder carr after the abandonment of wet grasslands during the last 70 years / Jan Douda in Annals of Forest Science, Vol 66 n° 7 (October - November 2009)
PermalinkRemote sensing with reflected signals: GNSS-R data processing software and test analysis / D. Yang in Inside GNSS, vol 4 n° 5 (September - October 2009)
Permalink