Descripteur
Documents disponibles dans cette catégorie (12)



Etendre la recherche sur niveau(x) vers le bas
Characteristics of taiga and tundra snowpack in development and validation of remote sensing of snow / Henna-Reetta Hannula (2022)
![]()
Titre : Characteristics of taiga and tundra snowpack in development and validation of remote sensing of snow Type de document : Thèse/HDR Auteurs : Henna-Reetta Hannula, Auteur Editeur : Helsinki [Finland] : University of Helsinki Année de publication : 2022 Importance : 79 p. Format : 21 x 30 cm ISBN/ISSN/EAN : 978-952-336-153-9 Note générale : Bibliographie
Academic dissertation, Faculty of Science, University of HelsinkiLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] carte thématique
[Termes IGN] changement climatique
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] distribution spatiale
[Termes IGN] données spatiotemporelles
[Termes IGN] échantillonnage de données
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] image infrarouge
[Termes IGN] manteau neigeux
[Termes IGN] problème inverse
[Termes IGN] réflectance spectrale
[Termes IGN] taïga
[Termes IGN] toundraRésumé : (auteur) Remote sensing of snow is a method to measure snow cover characteristics without direct physical contact with the target from airborne or space-borne platforms. Reliable estimates of snow cover extent and snow properties are vital for several applications including climate change research and weather and hydrological forecasting. Optical remote sensing methods detect the extent of snow cover based on its high reflectivity compared to other natural surfaces. A universal challenge for snow cover mapping is the high spatiotemporal variability of snow properties and heterogeneous landscapes such as the boreal forest biome. The optical satellite sensor’s footprint may extend from tens of meters to a kilometer; the signal measured by the sensor can simultaneously emerge from several target categories within individual satellite pixels. By use of spectral unmixing or inverse model-based methods, the fractional snow cover (FSC) within the satellite image pixel can be resolved from the recorded electromagnetic signal. However, these algorithms require knowledge of the spectral reflectance properties of the targets present within the satellite scene and the accuracy of snow cover maps is dependent on the feasibility of these spectral model parameters. On the other hand, abrupt changes in land cover types with large differences in their snow properties may be located within a single satellite image pixel and complicate the interpretation of the observations. Ground-based in-situ observations can be used to validate the snow parameters derived by indirect methods, but these data are affected by the chosen sampling. This doctoral thesis analyses laboratory-based spectral reflectance information on several boreal snow types for the purpose of the more accurate reflectance representation of snow in mapping method used for the detection of fractional snow cover. Multi-scale reflectance observations representing boreal spectral endmembers typically used in optical mapping of snow cover, are exploited in the thesis. In addition, to support the interpretation of remote sensing observations in boreal and tundra environments, extensive in-situ dataset of snow depth, snow water equivalent and snow density are exploited to characterize the snow variability and to assess the uncertainty and representativeness of these point-wise snow measurements applied for the validation of remote sensing observations. The overall goal is to advance knowledge about the spectral endmembers present in boreal landscape to improve the accuracy of the FSC estimates derived from the remote sensing observations and support better interpretation and validation of remote sensing observations over these heterogeneous landscapes. The main outcome from the work is that laboratory-controlled experiments that exclude disturbing factors present in field circumstances may provide more accurate representation of wet (melting) snow endmember reflectance for the FSC mapping method. The behavior of snow band reflectance is found to be insensitive to width and location differences between visible satellite sensor bands utilized in optical snow cover mapping which facilitates the use of various sensors for the construction of historical data records. The results also reveal the high deviation of snow reflectance due to heterogeneity in snow macro- and microstructural properties. The quantitative statistics of bulk snow properties show that areal averages derived from in-situ measurements and used to validate remote sensing observations are dependent on the measurement spacing and sample size especially over land covers with high absolute snow depth variability, such as barren lands in tundra. Applying similar sampling protocol (sample spacing and sample size) over boreal and tundra land cover types that represent very different snow characteristics will yield to non-equal representativeness of the areal mean values. The extensive datasets collected for this work demonstrate that observations measured at various scales can provide different view angle to the same challenge but at the same time any dataset individually cannot provide a full understanding of the target complexity. This work and the collected datasets directly facilitate further investigation of uncertainty in fractional snow cover maps retrieved by optical remote sensing and the interpretation of satellite observations in boreal and tundra landscapes. Note de contenu : 1. Introduction
2. Snow and its properties
3. Multispectral optical remote sensing of snow
4. Study site, datasets and methods
5. Results and discussion
6. Conclusions and future workNuméro de notice : 24060 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse étrangère Note de thèse : PhD Thesis : Sciences : University of Helsinki : 2022 DOI : 10.35614/isbn.9789523361522 En ligne : https://doi.org/10.35614/isbn.9789523361522 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101997 Rapid ecosystem change at the southern limit of the Canadian Arctic, Torngat Mountains National Park / Emma L. Davis in Remote sensing, vol 13 n° 11 (June-1 2021)
![]()
[article]
Titre : Rapid ecosystem change at the southern limit of the Canadian Arctic, Torngat Mountains National Park Type de document : Article/Communication Auteurs : Emma L. Davis, Auteur ; Andrew Trant, Auteur ; Robert G. Way, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 2085 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] arbuste
[Termes IGN] Arctique
[Termes IGN] Canada
[Termes IGN] changement climatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] détection de changement
[Termes IGN] écosystème
[Termes IGN] écotone
[Termes IGN] géostatistique
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Terra-MODIS
[Termes IGN] modèle de simulation
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] parc naturel national
[Termes IGN] régression logistique
[Termes IGN] surveillance de la végétation
[Termes IGN] toundraRésumé : (auteur) Northern protected areas guard against habitat and species loss but are themselves highly vulnerable to environmental change due to their fixed spatial boundaries. In the low Arctic, Torngat Mountains National Park (TMNP) of Canada, widespread greening has recently occurred alongside warming temperatures and regional declines in caribou. Little is known, however, about how biophysical controls mediate plant responses to climate warming, and available observational data are limited in temporal and spatial scope. In this study, we investigated the drivers of land cover change for the 9700 km2 extent of the park using satellite remote sensing and geostatistical modelling. Random forest classification was used to hindcast and simulate land cover change for four different land cover types from 1985 to 2019 with topographic and surface reflectance imagery (Landsat archive). The resulting land cover maps, in addition to topographic and biotic variables, were then used to predict where future shrub expansion is likely to occur using a binomial regression framework. Land cover hindcasts showed a 235% increase in shrub and a 105% increase in wet vegetation cover from 1985/89 to 2015/19. Shrub cover was highly persistent and displaced wet vegetation in southern, low-elevation areas, whereas wet vegetation expanded to formerly dry, mid-elevations. The predictive model identified both biotic (initial cover class, number of surrounding shrub neighbors), and topographic variables (elevation, latitude, and distance to the coast) as strong predictors of future shrub expansion. A further 51% increase in shrub cover is expected by 2039/43 relative to 2014 reference data. Establishing long-term monitoring plots within TMNP in areas where rapid vegetation change is predicted to occur will help to validate remote sensing observations and will improve our understanding of the consequences of change for biotic and abiotic components of the tundra ecosystem, including important cultural keystone species. Numéro de notice : A2021-442 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13112085 Date de publication en ligne : 26/05/2021 En ligne : https://doi.org/10.3390/rs13112085 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97832
in Remote sensing > vol 13 n° 11 (June-1 2021) . - n° 2085[article]Detecting archaeological features with airborne laser scanning in the alpine tundra of Sápmi, Northern Finland / Oula Seitsonen in Remote sensing, vol 13 n° 8 (April-2 2021)
![]()
[article]
Titre : Detecting archaeological features with airborne laser scanning in the alpine tundra of Sápmi, Northern Finland Type de document : Article/Communication Auteurs : Oula Seitsonen, Auteur ; Janne Ikäheimo, Auteur Année de publication : 2021 Article en page(s) : n° 1599 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] carte archéologique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données lidar
[Termes IGN] Finlande
[Termes IGN] fouille archéologique
[Termes IGN] lasergrammétrie
[Termes IGN] modèle numérique de surface
[Termes IGN] semis de points
[Termes IGN] toundraRésumé : (auteur) Open access airborne laser scanning (ALS) data have been available in Finland for over a decade and have been actively applied by the Finnish archaeologists in that time. The low resolution of this laser scanning 2008–2019 dataset (0.5 points/m2), however, has hindered its usability for archaeological prospection. In the summer of 2020, the situation changed markedly, when the Finnish National Land Survey started a new countrywide ALS survey with a higher resolution of 5 points/m2. In this paper we present the first results of applying this newly available ALS material for archaeological studies. Finnish LIDARK consortium has initiated the development of semi-automated approaches for visualizing, detecting, and analyzing archaeological features with this new dataset. Our first case studies are situated in the Alpine tundra environment of Sápmi in northern Finland, and the assessed archaeological features range from prehistoric sites to indigenous Sámi reindeer herding features and Second Word War-era German military structures. Already the initial analyses of the new ALS-5p data show their huge potential for locating, mapping, and assessing archaeological material. These results also suggest an imminent burst in the number of known archaeological sites, especially in the poorly accessible and little studied northern wilderness areas, when more data become available. Numéro de notice : A2021-381 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13081599 Date de publication en ligne : 20/04/2021 En ligne : https://doi.org/10.3390/rs13081599 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97629
in Remote sensing > vol 13 n° 8 (April-2 2021) . - n° 1599[article]Arctic tsunamis threaten coastal landscapes and communities – survey of Karrat Isfjord 2017 tsunami effects in Nuugaatsiaq, western Greenland / Mateusz C. Strzelecki in Natural Hazards and Earth System Sciences, vol 20 n° 9 (September 2020)
![]()
[article]
Titre : Arctic tsunamis threaten coastal landscapes and communities – survey of Karrat Isfjord 2017 tsunami effects in Nuugaatsiaq, western Greenland Type de document : Article/Communication Auteurs : Mateusz C. Strzelecki, Auteur ; Marek W. Jaskólski, Auteur Année de publication : 2020 Article en page(s) : pp 2521 - 2534 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse du paysage
[Termes IGN] Arctique
[Termes IGN] changement climatique
[Termes IGN] dégradation des sols
[Termes IGN] détection de changement
[Termes IGN] effondrement de terrain
[Termes IGN] érosion côtière
[Termes IGN] fjord
[Termes IGN] Groenland
[Termes IGN] inondation
[Termes IGN] littoral
[Termes IGN] paysage
[Termes IGN] risque naturel
[Termes IGN] toundra
[Termes IGN] tsunamiRésumé : (auteur) On the 17 June 2017, a massive landslide which mobilized 35–58 million m3 of material entered the Karrat Isfjord in western Greenland. It triggered a tsunami wave with a runup height exceeding 90 m close to the landslide, ca. 50 m on the opposite shore of the fjord. The tsunami travelled ca. 32 km along the fjord and reached the settlement of Nuugaatsiaq with ca. 1–1.5 m high waves which flooded the terrain up to 9 m a.s.l. (above sea level). Tsunami waves were powerful enough to destroy the community infrastructure, impact fragile coastal tundra landscape, and unfortunately injure several inhabitants and cause four deaths. Our field survey carried out 25 months after the event results in documentation of the previously unreported scale of damage in the settlement (ca. 48 % of infrastructure objects including houses and administration buildings were destroyed by the tsunami). We have observed a recognizable difference in the concentration of tsunami deposit accumulations between areas of the settlement overwashed by the wave and areas of runup and return flow. The key tsunami effects preserved in the coastal landscape were eroded coastal bluffs, gullied and dissected edges of cliffed coast in the harbour, and tundra vegetation compressed by boulders or icebergs rafted onshore during the event. Numéro de notice : A2020-612 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.5194/nhess-20-2521-2020 Date de publication en ligne : 24/09/2020 En ligne : https://doi.org/10.5194/nhess-20-2521-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95979
in Natural Hazards and Earth System Sciences > vol 20 n° 9 (September 2020) . - pp 2521 - 2534[article]A systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems / Dong Chen in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
![]()
[article]
Titre : A systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems Type de document : Article/Communication Auteurs : Dong Chen, Auteur ; Tatiana V. Loboda, Auteur ; Joanne V. Hall, Auteur Année de publication : 2020 Article en page(s) : pp 63 - 77 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] Canada
[Termes IGN] changement climatique
[Termes IGN] écosystème forestier
[Termes IGN] forêt boréale
[Termes IGN] image Landsat
[Termes IGN] incendie de forêt
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] perturbation écologique
[Termes IGN] Short Waves InfraRed
[Termes IGN] toundraRésumé : (Auteur) Satellite imagery has been widely used for the assessment of wildfire burn severity within the scientific community and fire management agencies. Multiple indices have been proposed to assess burn severity, among which the differenced Normalized Burn Ratio (dNBR) is arguably the most commonly used index that is expected to provide an objective and consistent assessment. However, although evidence of variability in the dNBR-based assessment of burn severity driven by image pair selection has been shown in many studies, the comprehensive examination of the extent of the bias resulting from the image selection has been lacking. In this study, we focus on three factors of the image selection process which are encountered by most Landsat-derived dNBR applications, including the sensor combination and the difference in timing of image acquisition (for both the year and seasonality) of pre- and post-fire image pairs. Through separate analyses, each targeting a single factor, we show that Landsat sensor combination between the pre- and post-fire images has a limited impact on the dNBR values. The difference in the year of acquisition between the images in the image pairs is shown to influence dNBR assessment with a noticeable increase in mean dNBR (>0.1) with only a single year difference between images compared to multi-year differences. However, differences in the image acquisition seasons and the resulting phenological differences is shown to impact dNBR values most considerably. Based on our results, we warn against the calculation of dNBR when the images are acquired in different seasons. We believe that despite the existence of multiple derivatives of dNBR, there remains a need for an improved version; one that is less susceptible to the phenological impacts introduced by the selected images. Numéro de notice : A2020-012 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.11.011 Date de publication en ligne : 19/11/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.11.011 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94400
in ISPRS Journal of photogrammetry and remote sensing > vol 159 (January 2020) . - pp 63 - 77[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020011 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Tree cover and height estimation in the Fennoscandian tundra-taiga transition zone using multiangular MISR data / J. Heiskanen in Remote sensing of environment, vol 103 n° 1 (15 July 2006)
PermalinkPermalinkMapping arctic tundra vegetation types using digital Spot HRV-XS / D. Stow in International Journal of Remote Sensing IJRS, vol 10 n° 8 (August 1989)
PermalinkReflectance spectra of subarctic lichens / D.E. Petzold in Remote sensing of environment, vol 24 n° 3 (01/04/1988)
PermalinkPermalinkPermalinkPermalink