Descripteur
Termes IGN > aménagement > sécurité routière > trafic routier
trafic routierSynonyme(s)circulation routièreVoir aussi |
Documents disponibles dans cette catégorie (120)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Detecting spatiotemporal propagation patterns of traffic congestion from fine-grained vehicle trajectory data / Haoyi Xiong in International journal of geographical information science IJGIS, vol 37 n° 5 (May 2023)
[article]
Titre : Detecting spatiotemporal propagation patterns of traffic congestion from fine-grained vehicle trajectory data Type de document : Article/Communication Auteurs : Haoyi Xiong, Auteur ; Xun Zhou, Auteur ; David A. Bennett, Auteur Année de publication : 2023 Article en page(s) : pp 1157-1179 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] déformation temporelle dynamique (algorithme)
[Termes IGN] détection d'anomalie
[Termes IGN] données spatiotemporelles
[Termes IGN] événement
[Termes IGN] flux
[Termes IGN] gestion de trafic
[Termes IGN] réseau routier
[Termes IGN] trafic routierRésumé : (auteur) Traffic congestion on a road segment typically begins as a small-scale spatiotemporal event that can then propagate throughout a road network and produce large-scale disruptions to a transportation system. In current techniques for the analysis of network flow, data is often aggregated to relatively large (e.g. 5 min) discrete time steps that obscure the small-scale spatiotemporal interactions that drive larger-scale dynamics. We propose a new method that handles fine-grained data to better capture those dynamics. Propagation patterns of traffic congestion are represented as spatiotemporally connected events. Each event is captured as a time series at the temporal resolution of the available trajectory data and at the spatial resolution of the network edge. The spatiotemporal propagation patterns of traffic congestion are captured using Dynamic Time Warping and represented as a set of directed acyclic graphs of spatiotemporal events. Results from this method are compared to an existing method using fine-grained data derived from an agent-based model of traffic simulation. Our method outperforms the existing method. Our method also successfully detects congestion propagation patterns that were reported by media news using sparse real-world data derived from taxis. Numéro de notice : A2023-225 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2023.2178653 Date de publication en ligne : 22/02/2023 En ligne : https://doi.org/10.1080/13658816.2023.2178653 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103177
in International journal of geographical information science IJGIS > vol 37 n° 5 (May 2023) . - pp 1157-1179[article]MTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction / Du Yin in Geoinformatica, vol 27 n° 1 (January 2023)
[article]
Titre : MTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction Type de document : Article/Communication Auteurs : Du Yin, Auteur ; Renhe Jiang, Auteur ; Jiewen Deng, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 77 - 105 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] déformation temporelle dynamique (algorithme)
[Termes IGN] données multitemporelles
[Termes IGN] données spatiotemporelles
[Termes IGN] flux
[Termes IGN] gestion de trafic
[Termes IGN] origine - destination
[Termes IGN] réseau neuronal de graphes
[Termes IGN] système de transport intelligent
[Termes IGN] trafic urbain
[Termes IGN] transport public
[Termes IGN] utilisateurRésumé : (auteur) The passenger flow prediction of the public metro system is a core and critical part of the intelligent transportation system, and is essential for traffic management, metro planning, and emergency safety measures. Most methods chose the recent segment from historical data as input to predict the future traffic flow; however, this would lead to the loss of the inherent characteristic information of the metro passenger flow’s daily morning and evening peak. Therefore, this study aggregates the recent-term and long-term information and use a long-term Gated Convolutional Neural Network (Gated CNN) to extract the temporal feature from the complex historical data. On the other hand, typical models did not consider the different spatial dependencies between different metro stations; this work proposes various adjacent relationships to characterize the degree of association between nodes. In order to extract spatial and temporal features at the same time, the historical data of recent-term and long-term is merged together to extract spatial features through a multi-graph neural network module. By combining Gated CNN and multi-graph module, we propose a multi-time multi-graph neural network named MTMGNN for metro passenger flow prediction. The result of our experiment on real-world datasets shows that our model MTMGNN is better than all state-of-art methods. Numéro de notice : A2023-113 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-022-00466-1 Date de publication en ligne : 25/04/2022 En ligne : https://doi.org/10.1007/s10707-022-00466-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102478
in Geoinformatica > vol 27 n° 1 (January 2023) . - pp 77 - 105[article]Street-level traffic flow and context sensing analysis through semantic integration of multisource geospatial data / Yatao Zhang in Transactions in GIS, vol 26 n° 8 (December 2022)
[article]
Titre : Street-level traffic flow and context sensing analysis through semantic integration of multisource geospatial data Type de document : Article/Communication Auteurs : Yatao Zhang, Auteur ; Martin Raubal, Auteur Année de publication : 2022 Article en page(s) : pp 3330 - 3348 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] allocation de Dirichlet latente
[Termes IGN] appariement sémantique
[Termes IGN] approche hiérarchique
[Termes IGN] données multisources
[Termes IGN] espace urbain
[Termes IGN] flux
[Termes IGN] milieu urbain
[Termes IGN] point d'intérêt
[Termes IGN] segmentation en régions
[Termes IGN] Singapour
[Termes IGN] trafic routier
[Termes IGN] utilisation du solRésumé : (auteur) Sensing urban spaces from multisource geospatial data is vital to understanding the transportation system in the urban context. However, the complexity of urban context and its indirect interaction with traffic flow deepen the difficulty of exploring their relationship. This study proposes a geo-semantic framework first to generate semantic representations of multi-hierarchical urban context and street-level traffic flow, and then investigate their mutual correlation and predictability using a novel semantic matching method. The results demonstrate that each street is associated with its multi-hierarchical spatial signatures of urban context and street-level temporal signatures of traffic flow. The correlation between urban context and traffic flow displays higher values after semantic matching than those in multi-hierarchies. Moreover, we found that utilizing traffic flow to predict urban context results in better accuracy than the reversed prediction. The results of signature analysis and relationship exploration can contribute to a deeper understanding of context-aware transportation research. Numéro de notice : A2022-916 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.13005 Date de publication en ligne : 27/11/2022 En ligne : https://doi.org/10.1111/tgis.13005 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102348
in Transactions in GIS > vol 26 n° 8 (December 2022) . - pp 3330 - 3348[article]Exploring multi-modal evacuation strategies for a landlocked population using large-scale agent-based simulations / Kevin Chapuis in International journal of geographical information science IJGIS, vol 36 n° 9 (September 2022)
[article]
Titre : Exploring multi-modal evacuation strategies for a landlocked population using large-scale agent-based simulations Type de document : Article/Communication Auteurs : Kevin Chapuis, Auteur ; Pham Minh-Duc, Auteur ; Arthur Brugière, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1741 - 1783 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] gestion de crise
[Termes IGN] gestion des risques
[Termes IGN] inondation
[Termes IGN] modèle de simulation
[Termes IGN] modèle orienté agent
[Termes IGN] prévention des risques
[Termes IGN] secours d'urgence
[Termes IGN] trafic routier
[Termes IGN] Viet Nam
[Termes IGN] zone urbaineRésumé : (auteur) At a time when the impacts of climate change and increasing urbanization are making risk management more complex, there is an urgent need for tools to better support risk managers. One approach increasingly used in crisis management is preventive mass evacuation. However, to implement and evaluate the effectiveness of such strategy can be complex, especially in large urban areas. Modeling approaches, and in particular agent-based models, are used to support implementation and to explore a large range of evacuation strategies, which is impossible through drills. One major limitation with simulation of traffic based on individual mobility models is their capacity to reproduce a context of mixed traffic. In this paper, we propose an agent-based model with the capacity to overcome this limitation. We simulated and compared different spatio-temporal evacuation strategies in the flood-prone landlocked area of the Phúc Xá district in Hanoi. We demonstrate that the interaction between distribution of transport modalities and evacuation strategies greatly impact evacuation outcomes. More precisely, we identified staged strategies based on the proximity to exit points that make it possible to reduce time spent on road and overall evacuation time. In addition, we simulated improved evacuation outcomes through selected modification of the road network. Numéro de notice : A2022-644 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2069774 Date de publication en ligne : 16/05/2022 En ligne : https://doi.org/10.1080/13658816.2022.2069774 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101455
in International journal of geographical information science IJGIS > vol 36 n° 9 (September 2022) . - pp 1741 - 1783[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022091 SL Revue Centre de documentation Revues en salle Disponible A framework for urban land use classification by integrating the spatial context of points of interest and graph convolutional neural network method / Yongyang Xu in Computers, Environment and Urban Systems, vol 95 (July 2022)
[article]
Titre : A framework for urban land use classification by integrating the spatial context of points of interest and graph convolutional neural network method Type de document : Article/Communication Auteurs : Yongyang Xu, Auteur ; Bo Zhou, Auteur ; Shuai Jin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101807 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] arbre aléatoire minimum
[Termes IGN] distribution spatiale
[Termes IGN] noeud
[Termes IGN] Pékin (Chine)
[Termes IGN] planification urbaine
[Termes IGN] point d'intérêt
[Termes IGN] réseau neuronal de graphes
[Termes IGN] taxinomie
[Termes IGN] trafic routier
[Termes IGN] triangulation de Delaunay
[Termes IGN] utilisation du sol
[Termes IGN] zone urbaineRésumé : (auteur) Land-use classification plays an important role in urban planning and resource allocation and had contributed to a wide range of urban studies and investigations. With the development of crowdsourcing technology and map services, points of interest (POIs) have been widely used for recognizing urban land-use types. However, current research methods for land-use classifications have been limited to extracting the spatial relationship of POIs in research units. To close this gap, this study uses a graph-based data structure to describe the POIs in research units, with graph convolutional networks (GCNs) being introduced to extract the spatial context and urban land-use classification. First, urban scenes are built by considering the spatial context of POIs. Second, a graph structure is used to express the scenes, where POIs are treated as graph nodes. The spatial distribution relationship of POIs is considered to be the graph's edges. Third, a GCN model is designed to extract the spatial context of the scene by aggregating the information of adjacent nodes within the graph and urban land-use classification. Thus, the land-use classification can be treated as a classification on a graphic level through deep learning. Moreover, the POI spatial context can be effectively extracted during classification. Experimental results and comparative experiments confirm the effectiveness of the proposed method. Numéro de notice : A2022-460 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101807 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101807 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100622
in Computers, Environment and Urban Systems > vol 95 (July 2022) . - n° 101807[article]Detecting spatiotemporal traffic events using geosocial media data / Shishuo Xu in Computers, Environment and Urban Systems, vol 94 (June 2022)PermalinkA geospatial workflow for the assessment of public transit system performance using near real-time data / Anastassios Dardas in Transactions in GIS, vol 26 n° 4 (June 2022)PermalinkGIS-based assessment of long-term traffic accidents using spatiotemporal and empirical Bayes analysis in Turkey / Saffet Erdoğan in Applied geomatics, vol 14 n° 2 (June 2022)PermalinkGIS-based employment availabilities by mode of transport in Kuwait / S. Alkheder in Applied geomatics, vol 14 n° 1 (March 2022)PermalinkUsing street view images to identify road noise barriers with ensemble classification model and geospatial analysis / Kai Zhang in Sustainable Cities and Society, vol 78 (March 2022)PermalinkEmerging technologies for smart cities’ transportation: Geo-information, data analytics and machine learning approaches / Li-Minn Ang in ISPRS International journal of geo-information, vol 11 n° 2 (February 2022)PermalinkRaw GIS to 3D road modeling for real-time traffic simulation / Yacine Amara in The Visual Computer, vol 38 n° 1 (January 2022)PermalinkExploring data fusion for multi-object detection for intelligent transportation systems using deep learning / Amira Mimouna (2022)PermalinkGIS-based survey over the public transport strategy: An instrument for economic and sustainable urban traffic planning / Gabriela Droj in ISPRS International journal of geo-information, vol 11 n° 1 (January 2022)PermalinkTowards synthetic sensing for smart cities : a machine/deep learning-based approach / Faraz Malik Awan (2022)Permalink