Descripteur
Documents disponibles dans cette catégorie (78)



Etendre la recherche sur niveau(x) vers le bas
Coupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction / Tianhong Zhao in Computers, Environment and Urban Systems, vol 94 (June 2022)
![]()
[article]
Titre : Coupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction Type de document : Article/Communication Auteurs : Tianhong Zhao, Auteur ; Zhengdong Huang, Auteur ; Wei Tu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101776 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] bati
[Termes IGN] données spatiotemporelles
[Termes IGN] gestion de trafic
[Termes IGN] graphe
[Termes IGN] logement
[Termes IGN] migration pendulaire
[Termes IGN] modèle de simulation
[Termes IGN] régression géographiquement pondérée
[Termes IGN] service public
[Termes IGN] Shenzhen
[Termes IGN] système de transport intelligent
[Termes IGN] transport public
[Termes IGN] transport urbainRésumé : (auteur) Accurate and robust short-term bus travel prediction facilitates operating the bus fleet to provide comfortable and flexible bus services. The built environment, including land use, buildings, and public facilities, has an important influence on bus travel demand prediction. However, previous studies regarded the built environment as a static feature thus even ignored its influence on bus travel in deep learning framework. To fill this gap, we propose a graph deep learning-based approach coupling with spatiotemporal influence of built environment (GDLBE) to enhance short-term bus travel demand prediction. A time-dependent geographically weighted regression method is used to resolve the dynamic influence of the built environment on bus travel demand at different times of the day. A graph deep learning module is used to capture the comprehensive spatial and temporal dependency behind massive bus travel demand. The short-term bus travel demand is predicted by fusing the dynamic built environment influences and spatiotemporal dependency. An experiment in Shenzhen is conducted to evaluate the performance of the proposed approach. Baseline methods are compared, and the results demonstrate that the proposed approach outperforms the baselines. These results will help bus fleet dispatch for smart transportation. Numéro de notice : A2022-245 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101776 Date de publication en ligne : 12/03/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101776 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100185
in Computers, Environment and Urban Systems > vol 94 (June 2022) . - n° 101776[article]Unravelling the dynamics behind the urban morphology of port-cities using a LUTI model based on cellular automata / Aditya Tafta Nugraha in Computers, Environment and Urban Systems, vol 92 (March 2022)
![]()
[article]
Titre : Unravelling the dynamics behind the urban morphology of port-cities using a LUTI model based on cellular automata Type de document : Article/Communication Auteurs : Aditya Tafta Nugraha, Auteur ; Ben J. Waterson, Auteur ; Simon P. Blainey, Auteur ; et al., Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] dynamique spatiale
[Termes IGN] Grande-Bretagne
[Termes IGN] interaction spatiale
[Termes IGN] modèle orienté agent
[Termes IGN] morphologie urbaine
[Termes IGN] planification urbaine
[Termes IGN] port
[Termes IGN] transport urbain
[Termes IGN] utilisation du solRésumé : (auteur) The urban morphology is characterised by self-organisation where interactions of multiple agents produce emerging patterns on the urban form. Port-urban relationship added to the complexity of port cities' urban form. Most urban cellular automata (CA) models simulate land-use evolution through transition rules representing multi-factored local interactions. However, calibration of CA-based urban land use and transport interaction (LUTI) models often utilise manual methods due to complexity of the process. This limits insights on urban interactions to a few explored settlements and prevents applications for planning and assessment of transport policies in other contexts. This paper, therefore, addresses three main points. The paper (i) demonstrates an improved method for the calibration of CA-based LUTI models, (ii) contributes to a better understanding of the urban dynamics in port city systems by quantifying generalizable interactions from a wide range of port-urban settlements, and (iii) illustrates how the use of these interactions in a simulation model can allow long-term impact predictions of planning interventions. These were done by formulating a model in a similar structure as a neural network model to enable automatic calibration using an application of the gradient-descent algorithm. The model was then used to quantify the dynamics between land-use, geographic, and transport factors in 46 port-based and 10 non-port settlements across Great Britain, thus enabling cross-sectional analysis. Cluster analysis of the calibrated interactions in the study areas was conducted to examine the variations of these interactions. This produced two main groups. In the first group, consisting larger settlements, connections between ports and other urban activities were weaker than in the second group which consisted of smaller port-settlements. Overall, the findings of the research are consistent with existing evidence in the port-cities literature but go further in quantifying the interaction between urban agents within port-urban systems of various sizes and types. These quantified interactions will enable planners to better predict the longer-term consequences of their interventions. Numéro de notice : A2022-084 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101733 Date de publication en ligne : 25/11/2021 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101733 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99489
in Computers, Environment and Urban Systems > vol 92 (March 2022)[article]Emerging technologies for smart cities’ transportation: Geo-information, data analytics and machine learning approaches / Li-Minn Ang in ISPRS International journal of geo-information, vol 11 n° 2 (February 2022)
![]()
[article]
Titre : Emerging technologies for smart cities’ transportation: Geo-information, data analytics and machine learning approaches Type de document : Article/Communication Auteurs : Li-Minn Ang, Auteur ; Jasmine Kah Phooi Seng, Auteur ; Ericmoore Ngharamike, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 85 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] données massives
[Termes IGN] planification urbaine
[Termes IGN] système de transport intelligent
[Termes IGN] trafic routier
[Termes IGN] transport collectif
[Termes IGN] transport urbain
[Termes IGN] ville intelligente
[Termes IGN] zone urbaineRésumé : (auteur) With the recent increase in urban drift, which has led to an unprecedented surge in urban population, the smart city (SC) transportation industry faces a myriad of challenges, including the development of efficient strategies to utilize available infrastructures and minimize traffic. There is, therefore, the need to devise efficient transportation strategies to tackle the issues affecting the SC transportation industry. This paper reviews the state-of-the-art for SC transportation techniques and approaches. The paper gives a comprehensive review and discussion with a focus on emerging technologies from several information and data-driven perspectives including (1) geoinformation approaches; (2) data analytics approaches; (3) machine learning approaches; (4) integrated deep learning approaches; (5) artificial intelligence (AI) approaches. The paper contains core discussions on the impacts of geo-information on SC transportation, data-driven transportation and big data technology, machine learning approaches for SC transportation, innovative artificial intelligence (AI) approaches for SC transportation, and recent trends revealed by using integrated deep learning towards SC transportation. This survey paper aimed to give useful insights to researchers regarding the roles that data-driven approaches can be utilized for in smart cities (SCs) and transportation. An objective of this paper was to acquaint researchers with the recent trends and emerging technologies for SC transportation applications, and to give useful insights to researchers on how these technologies can be exploited for SC transportation strategies. To the best of our knowledge, this is the first comprehensive review that examines the impacts of the various five driving technological forces—geoinformation, data-driven and big data technology, machine learning, integrated deep learning, and AI—in the context of SC transportation applications. Numéro de notice : A2022-118 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11020085 Date de publication en ligne : 24/01/2022 En ligne : https://doi.org/10.3390/ijgi11020085 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99649
in ISPRS International journal of geo-information > vol 11 n° 2 (February 2022) . - n° 85[article]Access to urban parks: Comparing spatial accessibility measures using three GIS-based approaches / Siqin Wang in Computers, Environment and Urban Systems, vol 90 (November 2021)
![]()
[article]
Titre : Access to urban parks: Comparing spatial accessibility measures using three GIS-based approaches Type de document : Article/Communication Auteurs : Siqin Wang, Auteur ; Mingshu Wang, Auteur ; Yan Liu, Auteur Année de publication : 2021 Article en page(s) : n° 101713 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] accessibilité
[Termes IGN] analyse en composantes principales
[Termes IGN] Australie
[Termes IGN] corrélation
[Termes IGN] distance
[Termes IGN] interaction spatiale
[Termes IGN] parc urbain
[Termes IGN] Pays-Bas
[Termes IGN] planification urbaine
[Termes IGN] transport urbainRésumé : (auteur) Urban parks are essential components of urban ecosystems, providing recreation and relaxation places to residents. Measuring the spatial accessibility to urban parks serves as an initial step in urban planning and developing urban development strategies to improve social and environmental justice. This study aims to evaluate measures of spatial accessibility to urban parks by comparing three geographic information systems (GIS)-based approaches, accounting for network complexity, transport modes, distance thresholds, and destination choices. Taking Ipswich City (Australia) and Enschede (the Netherlands) as two testbeds, we examine the spatial patterns of a total of 21 accessibility measures in the two cities and conduct a correlation and principal component analysis to unravel the interrelationship between these measures. The results suggest that among all measures under the three approaches, the selection of distance thresholds and transport modes matter more to accessibility measures than the destination choices. Furthermore, when distance threshold and transport mode are held constant, the network-based and entrance-based methods provide more realistic accessibility measures than other methods. We also discuss the generality of the entrance-based method we propose and suggest ways to choose the most appropriate accessibility measure for use in different contexts. Numéro de notice : A2021-698 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101713 Date de publication en ligne : 21/09/2021 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101713 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98558
in Computers, Environment and Urban Systems > vol 90 (November 2021) . - n° 101713[article]Semantic enrichment of secondary activities using smart card data and point of interests: a case study in London / Nilufer Sari Aslam in Annals of GIS, vol 27 n° 1 (January 2021)
![]()
[article]
Titre : Semantic enrichment of secondary activities using smart card data and point of interests: a case study in London Type de document : Article/Communication Auteurs : Nilufer Sari Aslam, Auteur ; Di Zhu, Auteur ; Tao Cheng, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 29 - 41 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] carte à puce
[Termes IGN] collecte de données
[Termes IGN] données socio-économiques
[Termes IGN] données spatiotemporelles
[Termes IGN] enrichissement sémantique
[Termes IGN] loisir
[Termes IGN] Londres
[Termes IGN] méthode heuristique
[Termes IGN] planification urbaine
[Termes IGN] point d'intérêt
[Termes IGN] transport urbainRésumé : (auteur) The large volume of data automatically collected by smart card fare systems offers a rich source of information regarding daily human activities with a high resolution of spatial and temporal representation. This provides an opportunity for aiding transport planners and policy-makers to plan transport systems and cities more responsively. However, there are currently limitations when it comes to understanding the secondary activities of individual commuters. Accordingly, in this paper, we propose a framework to detect and infer secondary activities from individuals’ daily travel patterns from the smart card data and reduce the use of conventional surveys. First, we proposed a ‘heuristic secondary activity identification algorithm’, which uses commuters’ primary locations (home & work) and the direction (from & to) information to identify secondary activities for individuals. The algorithm provides a high-level classification of the activity types as before-work, midday and after-work activity patterns of individuals. Second, this classification is semantically enriched using Points of Interests to provide meaningful insights into individuals’ travel purposes and mobility in an urban environment. Lastly, using the transit data of London as a case study, the model is compared with a volunteer survey to demonstrate its effectiveness and offering a cost-effective method to travel demand research. Numéro de notice : A2021-319 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/19475683.2020.1783359 Date de publication en ligne : 01/08/2020 En ligne : https://doi.org/10.1080/19475683.2020.1783359 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97550
in Annals of GIS > vol 27 n° 1 (January 2021) . - pp 29 - 41[article]Extracting commuter-specific destination hotspots from trip destination data – comparing the boro taxi service with Citi Bike in NYC / Andreas Keler in Geo-spatial Information Science, vol 23 n° 2 (June 2020)
PermalinkSpatio-temporal evaluation of transport accessibility of the Istanbul metrobus line / Wasim Shoman in Geocarto international, vol 35 n° 6 ([01/05/2020])
PermalinkPermalinkUsing Network Segments in the Visualization of Urban Isochrones / Jeff Allen in Cartographica, vol 53 n° 4 (Winter 2018)
PermalinkLes usages des systèmes d’informations géographiques en matière de gestion de mobilité en milieu urbain : la mise en accessibilité aux personnes à mobilité réduite des arrêts de bus en Seine-Seine-Denis / Thi-Lieu Gremont-Dong (2018)
PermalinkA viewpoint based approach to the visual exploration of trajectory / Jie Li in Journal of Visual Languages and Computing, vol 41 (August 2017)
PermalinkPermalinkApport de la sûreté de fonctionnement à l’analyse spatialisée du risque inondation / Michaël Gonzva in Revue internationale de géomatique, vol 26 n° 3 (juillet - septembre 2016)
PermalinkThe use of anamorphic images in the development of transit maps / Tomasz Stepien in Geodesy and cartography, vol 65 n° 1 (June 2016)
PermalinkTowards process validation for complex transport models: A sensitivity analysis of a social network-enhanced activity-travel model / Nicole Ronald in Computers, Environment and Urban Systems, vol 55 (January 2016)
Permalink