Descripteur
Termes IGN > sciences naturelles > physique > optique > optique physique > radiométrie > rayonnement électromagnétique > modèle de transfert radiatif
modèle de transfert radiatifSynonyme(s)Discrete Anisotropic Radiative Transfer, DARTVoir aussi |
Documents disponibles dans cette catégorie (74)



Etendre la recherche sur niveau(x) vers le bas
DART-Lux: An unbiased and rapid Monte Carlo radiative transfer method for simulating remote sensing images / Yingjie Wang in Remote sensing of environment, vol 274 (June 2022)
![]()
[article]
Titre : DART-Lux: An unbiased and rapid Monte Carlo radiative transfer method for simulating remote sensing images Type de document : Article/Communication Auteurs : Yingjie Wang, Auteur ; Abdelaziz Kallel, Auteur ; Xuebo Yang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112973 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bande spectrale
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] image à haute résolution
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle de transfert radiatif
[Termes IGN] radiance
[Termes IGN] réflectance directionnelle
[Termes IGN] scène forestière
[Termes IGN] scène urbaineRésumé : (auteur) Accurate and efficient simulation of remote sensing images is increasingly needed in order to better exploit remote sensing observations and to better design remote sensing missions. DART (Discrete Anisotropic Radiative Transfer), developed since 1992 based on the discrete ordinates method (i.e., standard mode DART-FT), is one of the most accurate and comprehensive 3D radiative transfer models to simulate the radiative budget and remote sensing observations of urban and natural landscapes. Recently, a new method, called DART-Lux, was integrated into DART model to address the requirements of massive remote sensing data simulation for large-scale and complex landscapes. It is developed based on efficient Monte Carlo light transport algorithms (i.e., bidirectional path tracing) and on DART model framework. DART-Lux can accurately and rapidly simulate the bidirectional reflectance factor (BRF) and spectral images of arbitrary landscapes. This paper presents its theory, implementation, and evaluation. Its accuracy, efficiency and advantages are also discussed. The comparison with standard DART-FT in a variety of scenarios shows that DART-Lux is consistent with DART-FT (relative differences Numéro de notice : A2022-398 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.112973 Date de publication en ligne : 26/03/2022 En ligne : https://doi.org/10.1016/j.rse.2022.112973 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100698
in Remote sensing of environment > vol 274 (June 2022) . - n° 112973[article]Efficient convolutional neural architecture search for LiDAR DSM classification / Aili Wang in IEEE Transactions on geoscience and remote sensing, vol 60 n° 5 (May 2022)
![]()
[article]
Titre : Efficient convolutional neural architecture search for LiDAR DSM classification Type de document : Article/Communication Auteurs : Aili Wang, Auteur ; Dong Xue, Auteur ; Haibin Wu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5703317 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] modèle de transfert radiatif
[Termes IGN] modèle numérique de surface
[Termes IGN] précision de la classification
[Termes IGN] semis de pointsRésumé : (auteur) Light detection and ranging (LiDAR) data provide rich elevation information, so it plays an irreplaceable role in ground object classification. Recently, convolutional neural networks (CNNs) have shown excellent performance in LiDAR digital surface models (DSMs) classification. However, the architecture of CNN model relies heavily on manual design, so it has great limitations. In addition, different sensors capture LiDAR datasets with different properties, so the model should be designed to suit for different datasets, which further increases the workload of architecture design. Therefore, this article proposes a method of automatic design of LiDAR DSM classification model. First, attention mechanism is introduced into search space to improve the feature extraction capability of the model. Then, a gradient-based search strategy is used to obtain the optimal architecture from this search space. Second, a learning rate adjustment strategy is proposed to reduce the time spent in the search stage and evaluation stage to improve the classification accuracy of the model. Finally, a regularization scheme is introduced to enhance the robustness of the model and avoid overfitting. Experimental results on three public LiDAR datasets (Bayview Park, Recology, and Houston) obtained from different sensors show that the proposed neural architecture search method achieves the impressive classification performance compared to several state-of-the-art classification methods and improves the classification accuracy under the condition of limited training samples. Numéro de notice : A2022-408 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3171520 Date de publication en ligne : 02/05/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3171520 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100742
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 5 (May 2022) . - n° 5703317[article]A convolution neural network for forest leaf chlorophyll and carotenoid estimation using hyperspectral reflectance / Shuo Shi in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
![]()
[article]
Titre : A convolution neural network for forest leaf chlorophyll and carotenoid estimation using hyperspectral reflectance Type de document : Article/Communication Auteurs : Shuo Shi, Auteur ; Lu Xu, Auteur ; Wei Gong, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102719 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] chlorophylle
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] écosystème forestier
[Termes IGN] feuille (végétation)
[Termes IGN] modèle de transfert radiatif
[Termes IGN] processus gaussien
[Termes IGN] réflectance spectrale
[Termes IGN] régressionRésumé : (auteur) Forest leaf chlorophyll (Cab) and carotenoid (Cxc) are key functional indicators for the state of the forest ecosystem. Current machine learning models based on hyperspectral reflectance are widely applied to estimate leaf Cab and Cxc contents at leaf scale. However, these models have certain accuracy for non-independent datasets but have poor generalization for independent datasets when they are used to estimate leaf Cab and Cxc contents. This fact limits that hyperspectral remote sensing completely replaces destructive measurements for leaf Cab and Cxc contents. Thus, the development of an estimation model with high accuracy and satisfactory generalization is necessary. Convolutional neural networks (CNNs) have certain accuracy and generalization in many domains, and have the potential to solve above-mentioned problem. Therefore, this study developed a CNN using one-dimensional hyperspectral reflectance, which aimed to improve the model's accuracy and generalization in leaf Cab and Cxc content estimation at leaf scale. The proposed CNN was developed by three steps. First, in consideration of the correlation between leaf Cab and Cxc contents in natural leaves, 2500 physical data with leaf reflectance and corresponding Cab and Cxc contents were generated by leaf radiative transfer model and multivariable gaussian distribution function. Then, the proposed CNN was built by five strategies based on the architecture of the AlexNet. Finally, five-fold cross validation was performed with 70% of the physical data to determine the best strategy to develop the proposed CNN. These were executed to ensure the proposed CNN with the maximum accuracy and generalization. In addition, the accuracy and generalization of the proposed CNN were tested using a non-independent dataset and an independent dataset, respectively. The proposed CNN was also compared with back propagation neural network (BPNN), support vector regression (SVR) and gaussian process regression (GPR). Results showed that the best CNN could be developed with one input, five convolutional, three max-pooling and three fully-connected layers. Comprehensively considering the model's accuracy and generalization, the proposed CNN was the best model for leaf Cab and Cxc content estimation compared with BPNN, SVR and GPR. This study provides a development strategy of CNN estimation model using one-dimensional hyperspectral reflectance at leaf scale. The proposed CNN could further promote the practical application of hyperspectral remote sensing in leaf Cab and Cxc content estimation. Numéro de notice : A2022-231 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102719 Date de publication en ligne : 16/02/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102719 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100119
in International journal of applied Earth observation and geoinformation > vol 108 (April 2022) . - n° 102719[article]Radiative transfer modeling in structurally complex stands: towards a better understanding of parametrization / Frédéric André in Annals of Forest Science [en ligne], vol 78 n° 4 (December 2021)
![]()
[article]
Titre : Radiative transfer modeling in structurally complex stands: towards a better understanding of parametrization Type de document : Article/Communication Auteurs : Frédéric André, Auteur ; Louis de Wergifosse, Auteur ; François de Coligny, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 92 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Belgique
[Termes IGN] couvert forestier
[Termes IGN] croissance des arbres
[Termes IGN] densité du feuillage
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] estimation bayesienne
[Termes IGN] Fagus sylvatica
[Termes IGN] houppier
[Termes IGN] Leaf Mass per Area
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle de transfert radiatif
[Termes IGN] peuplement mélangé
[Termes IGN] photosynthèse
[Termes IGN] production primaire brute
[Termes IGN] production primaire nette
[Termes IGN] Quercus sessiliflora
[Termes IGN] structure d'un peuplement forestier
[Vedettes matières IGN] ForesterieRésumé : (auteur) Key message: The best options to parametrize a radiative transfer model change according to the response variable used for fitting. To predict transmitted radiation, the turbid medium approach performs much better than the porous envelop, especially when accounting for the intra-specific variations in leaf area density but crown shape has limited effects. When fitting with tree growth data, the porous envelop approach combined with the more complex crown shape provides better results. When using a joint optimization with both variables, the better options are the turbid medium and the more detailed approach for describing crown shape and leaf area density.
Context: Solar radiation transfer is a key process of tree growth dynamics in forest.
Aims: Determining the best options to parametrize a forest radiative transfer model in heterogeneous oak and beech stands from Belgium.
Methods: Calibration and evaluation of a forest radiative transfer module coupled to a spatially explicit tree growth model were repeated for different configuration options (i.e., turbid medium vs porous envelope to calculate light interception by trees, crown shapes of contrasting complexity to account for their asymmetry) and response variables used for fitting (transmitted radiation and/or tree growth data).
Results: The turbid medium outperformed the porous envelope approach. The more complex crown shapes enabling to account for crown asymmetry improved performances when including growth data in the calibration.
Conclusion: Our results provide insights on the options to select when parametrizing a forest radiative 3D-crown transfer model depending on the research or application objectives.Numéro de notice : A2021-768 Affiliation des auteurs : non IGN Thématique : FORET/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-021-01106-8 Date de publication en ligne : 26/10/2021 En ligne : https://doi.org/10.1007/s13595-021-01106-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99010
in Annals of Forest Science [en ligne] > vol 78 n° 4 (December 2021) . - n° 92[article]A parameterization of the cloud scattering polarization signal derived from GPM observations for microwave fast radative transfer models / Victoria Sol Galligani in IEEE Transactions on geoscience and remote sensing, vol 59 n° 11 (November 2021)
![]()
[article]
Titre : A parameterization of the cloud scattering polarization signal derived from GPM observations for microwave fast radative transfer models Type de document : Article/Communication Auteurs : Victoria Sol Galligani, Auteur ; Die Wang, Auteur ; Paola Belen Corales, Auteur ; Catherine Prigent, Auteur Année de publication : 2021 Article en page(s) : pp 8968 - 8977 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] image GPM
[Termes IGN] image radar
[Termes IGN] latitude
[Termes IGN] modèle atmosphérique
[Termes IGN] modèle de transfert radiatif
[Termes IGN] nuage
[Termes IGN] polarisation
[Termes IGN] prévision météorologique
[Termes IGN] radiomètre à hyperfréquence
[Termes IGN] reconstruction du signal
[Termes IGN] variation saisonnièreRésumé : (auteur) Microwave cloud polarized observations have shown the potential to improve precipitation retrievals since they are linked to the orientation and shape of ice habits. Stratiform clouds show larger brightness temperature (TB) polarization differences (PDs), defined as the vertically polarized TB (TBV) minus the horizontally polarized TB (TBH), with ~10 K PD values at 89 GHz due to the presence of horizontally aligned snowflakes, while convective regions show smaller PD signals, as graupel and/or hail in the updraft tend to become randomly oriented. The launch of the global precipitation measurement (GPM) microwave imager (GMI) has extended the availability of microwave polarized observations to higher frequencies (166 GHz) in the tropics and midlatitudes, previously only available up to 89 GHz. This study analyzes one year of GMI observations to explore further the previously reported stable relationship between the PD and the observed TBs at 89 and 166 GHz, respectively. The latitudinal and seasonal variability is analyzed to propose a cloud scattering polarization parameterization of the PD-TB relationship, capable of reconstructing the PD signal from simulated TBs. Given that operational radiative transfer (RT) models do not currently simulate the cloud polarized signals, this is an alternative and simple solution to exploit the large number of cloud polarized observations available. The atmospheric radiative transfer simulator (ARTS) is coupled with the weather research and forecasting (WRF) model, in order to apply the proposed parameterization to the RT simulated TBs and hence infer the corresponding PD values, which show to reproduce the observed GMI PDs well. Numéro de notice : A2021-886 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3049921 Date de publication en ligne : 02/02/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3049921 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98871
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 11 (November 2021) . - pp 8968 - 8977[article]Refining MODIS NIR atmospheric water vapor retrieval algorithm using GPS-derived water vapor data / Jia He in IEEE Transactions on geoscience and remote sensing, vol 59 n° 5 (May 2021)
PermalinkAutomatic atmospheric correction for shortwave hyperspectral remote sensing data using a time-dependent deep neural network / Jian Sun in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)
PermalinkCloud detection from paired CrIS water vapor and CO₂ channels using machine learning techniques / Miao Tian in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
PermalinkApport de la modélisation physique pour la cartographie de la biodiversité végétale en forêts tropicales par télédétection optique / Dav Ebengo Mwampongo (2021)
PermalinkImpact of INSAT-3D/3DR radiance data assimilation in predicting tropical cyclone Titli over the bay of Bengal / Raghu Nadimpalli in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
PermalinkTowards a semi-automated mapping of Australia native invasive alien Acacia trees using Sentinel-2 and radiative transfer models in South Africa / Cecilia Masemola in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkThe application of bidirectional reflectance distribution function data to recognize the spatial heterogeneity of mixed pixels in vegetation remote sensing: a simulation study / Yanan Yan in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)
PermalinkCaractérisation du manteau neigeux arctique, suivi climatique et télédétection micro-onde / Céline Vargel (2020)
PermalinkSimulation d’éclairements des surfaces ombrées en zone urbaine par transfert radiatif 3D (modèle DART) / Yulu Xi (2020)
PermalinkQuantification of the adjacency effect on measurements in the thermal infrared region / Xiaopo Zheng in IEEE Transactions on geoscience and remote sensing, vol 57 n° 12 (December 2019)
Permalink