Descripteur
Termes IGN > mathématiques > statistique mathématique > probabilités > stochastique > modèle stochastique
modèle stochastiqueSynonyme(s)modèle probabiliste |
Documents disponibles dans cette catégorie (277)



Etendre la recherche sur niveau(x) vers le bas
A unified cycle-slip, multipath estimation, detection and mitigation method for VIO-aided PPP in urban environments / Bo Xu in GPS solutions, vol 27 n° 2 (April 2023)
![]()
[article]
Titre : A unified cycle-slip, multipath estimation, detection and mitigation method for VIO-aided PPP in urban environments Type de document : Article/Communication Auteurs : Bo Xu, Auteur ; Shoujian Zhang, Auteur ; Kaifa Kuang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 59 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] filtre de Kalman
[Termes IGN] glissement de cycle
[Termes IGN] milieu urbain
[Termes IGN] modèle stochastique
[Termes IGN] navigation autonome
[Termes IGN] navigation inertielle
[Termes IGN] odomètre
[Termes IGN] phase
[Termes IGN] positionnement ponctuel précis
[Termes IGN] signal GNSS
[Termes IGN] trajet multipleRésumé : (auteur) Accurate, continuous and reliable positioning is required in autonomous driving. The precise point positioning (PPP) technique, which can provide a global accurate positioning service using a single global navigation satellite system (GNSS) receiver, has attracted much attention. Nevertheless, due to the cycle slips and multipath effects in the GNSS signal, the performance of PPP is severely degraded in urban areas, which has a negative effect on the PPP/inertial navigation system (INS)/vision integrated navigation. Moreover, the carrier phase observations with un-modeled multipath cause false detection of small cycle slips and lead to deviation in the state variable estimation in PPP. Therefore, an effective cycle slip/multipath estimation, detection and mitigation (EDM) method is proposed. A clustering method is used to separate the cycle slips and multipath from the carrier phase observations aided by visual inertial odometry (VIO) positioning results. The influence of the carrier phase multipath on state variable estimation is reduced by adjusting the stochastic ambiguity model in the Kalman filter. The proposed EDM method is validated by vehicle experiments conducted in urban and freeway areas. Experimental results demonstrate that 0.2% cycle slip detection error is achieved by our method. Besides, the multipath estimation accuracy of EDM improves by more than 50% compared with the geometry-based (GB) method. Regarding positioning accuracy, the EDM method has a maximum of 72.2% and 63.2% improvement compared to traditional geometry-free (GF) and GB methods. Numéro de notice : A2023-124 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-023-01396-7 Date de publication en ligne : 17/01/2023 En ligne : https://doi.org/10.1007/s10291-023-01396-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102501
in GPS solutions > vol 27 n° 2 (April 2023) . - n° 59[article]PSSNet: Planarity-sensible Semantic Segmentation of large-scale urban meshes / Weixiao Gao in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
![]()
[article]
Titre : PSSNet: Planarity-sensible Semantic Segmentation of large-scale urban meshes Type de document : Article/Communication Auteurs : Weixiao Gao, Auteur ; Liangliang Nan, Auteur ; Bas Boom, Auteur ; Hugo Ledoux, Auteur Année de publication : 2023 Article en page(s) : pp 32 - 44 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse de scène 3D
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classification dirigée
[Termes IGN] contour
[Termes IGN] maillage
[Termes IGN] Perceptron multicouche
[Termes IGN] réseau neuronal de graphes
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantiqueRésumé : (Auteur) We introduce a novel deep learning-based framework to interpret 3D urban scenes represented as textured meshes. Based on the observation that object boundaries typically align with the boundaries of planar regions, our framework achieves semantic segmentation in two steps: planarity-sensible over-segmentation followed by semantic classification. The over-segmentation step generates an initial set of mesh segments that capture the planar and non-planar regions of urban scenes. In the subsequent classification step, we construct a graph that encodes the geometric and photometric features of the segments in its nodes and the multi-scale contextual features in its edges. The final semantic segmentation is obtained by classifying the segments using a graph convolutional network. Experiments and comparisons on two semantic urban mesh benchmarks demonstrate that our approach outperforms the state-of-the-art methods in terms of boundary quality, mean IoU (intersection over union), and generalization ability. We also introduce several new metrics for evaluating mesh over-segmentation methods dedicated to semantic segmentation, and our proposed over-segmentation approach outperforms state-of-the-art methods on all metrics. Our source code is available at https://github.com/WeixiaoGao/PSSNet. Numéro de notice : A2023-064 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.020 Date de publication en ligne : 02/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.020 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102399
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 32 - 44[article]A data-driven framework to manage uncertainty due to limited transferability in urban growth models / Jingyan Yu in Computers, Environment and Urban Systems, vol 98 (December 2022)
![]()
[article]
Titre : A data-driven framework to manage uncertainty due to limited transferability in urban growth models Type de document : Article/Communication Auteurs : Jingyan Yu, Auteur ; Alex Hagen-Zanker, Auteur ; Naratip Santitissadeekorn, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101892 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] automate cellulaire
[Termes IGN] changement d'utilisation du sol
[Termes IGN] croissance urbaine
[Termes IGN] estimation bayesienne
[Termes IGN] étalement urbain
[Termes IGN] Europe (géographie politique)
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] modèle stochastique
[Termes IGN] simulation dynamiqueRésumé : (auteur) The processes of urban growth vary in space and time. There is a lack of model transferability, which means that models estimated for a particular study area and period are not necessarily applicable for other periods and areas. This problem is often addressed through scenario analysis, where scenarios reflect different plausible model realisations based typically on expert consultation. This study proposes a novel framework for data-driven scenario development which, consists of three components - (i) multi-area, multi-period calibration, (ii) growth mode clustering, and (iii) cross-application. The framework finds clusters of parameters, referred to as growth modes: within the clusters, parameters represent similar spatial development trajectories; between the clusters, parameters represent substantially different spatial development trajectories. The framework is tested with a stochastic dynamic urban growth model across European functional urban areas over multiple time periods, estimated using a Bayesian method on an open global urban settlement dataset covering the period 1975–2014.
The results confirm a lack of transferability, with reduced confidence in the model over the validation period, compared to the calibration period. Over the calibration period the probability that parameters estimated specifically for an area outperforms those for other areas is 96%. However, over an independent validation period, this probability drops to 72%. Four growth modes are identified along a gradient from compact to dispersed spatial developments. For most training areas, spatial development in the later period is better characterized by one of the four modes than their own historical parameters. The results provide strong support for using identified parameter clusters as a tool for data-driven and quantitative scenario development, to reflect part of the uncertainty of future spatial development trajectories.Numéro de notice : A2022-799 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101892 Date de publication en ligne : 08/10/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101892 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101966
in Computers, Environment and Urban Systems > vol 98 (December 2022) . - n° 101892[article]Reconstructing compact building models from point clouds using deep implicit fields / Zhaiyu Chen in ISPRS Journal of photogrammetry and remote sensing, vol 194 (December 2022)
![]()
[article]
Titre : Reconstructing compact building models from point clouds using deep implicit fields Type de document : Article/Communication Auteurs : Zhaiyu Chen, Auteur ; Hugo Ledoux, Auteur ; Seyran Khademi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 58 - 73 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] Bâti-3D
[Termes IGN] champ aléatoire de Markov
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de modèle
[Termes IGN] image à haute résolution
[Termes IGN] maillage par triangles
[Termes IGN] optimisation (mathématiques)
[Termes IGN] polygone
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] semis de pointsRésumé : (auteur) While three-dimensional (3D) building models play an increasingly pivotal role in many real-world applications, obtaining a compact representation of buildings remains an open problem. In this paper, we present a novel framework for reconstructing compact, watertight, polygonal building models from point clouds. Our framework comprises three components: (a) a cell complex is generated via adaptive space partitioning that provides a polyhedral embedding as the candidate set; (b) an implicit field is learned by a deep neural network that facilitates building occupancy estimation; (c) a Markov random field is formulated to extract the outer surface of a building via combinatorial optimization. We evaluate and compare our method with state-of-the-art methods in generic reconstruction, model-based reconstruction, geometry simplification, and primitive assembly. Experiments on both synthetic and real-world point clouds have demonstrated that, with our neural-guided strategy, high-quality building models can be obtained with significant advantages in fidelity, compactness, and computational efficiency. Our method also shows robustness to noise and insufficient measurements, and it can directly generalize from synthetic scans to real-world measurements. The source code of this work is freely available at https://github.com/chenzhaiyu/points2poly. Numéro de notice : A2022-824 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.09.017 Date de publication en ligne : 17/10/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.09.017 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102001
in ISPRS Journal of photogrammetry and remote sensing > vol 194 (December 2022) . - pp 58 - 73[article]Robust modeling of GNSS orbit and clock error dynamics / Elisa Gallon in Navigation : journal of the Institute of navigation, vol 69 n° 4 (Fall 2022)
![]()
[article]
Titre : Robust modeling of GNSS orbit and clock error dynamics Type de document : Article/Communication Auteurs : Elisa Gallon, Auteur ; Mathieu Joerger, Auteur ; Boris Pervan, Auteur Année de publication : 2022 Article en page(s) : n° 539 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] centrale inertielle
[Termes IGN] décalage d'horloge
[Termes IGN] erreur
[Termes IGN] erreur de positionnement
[Termes IGN] filtre de Kalman
[Termes IGN] modèle stochastique
[Termes IGN] orbitographie par GNSS
[Termes IGN] Receiver Autonomous Integrity MonitoringRésumé : (auteur) In this paper, we develop new stochastic orbit and clock error models for positioning, fault detection, and integrity monitoring over time. GPS and Galileo orbit and clock data are evaluated and ranging errors are analyzed and modeled over time. This work is intended for time-sequential safety-critical navigation systems including global navigation satellite systems (GNSSs) integrated with inertial navigation systems (INSs) and Kalman filter implementations of Advanced Receiver Autonomous Integrity Monitoring (ARAIM). Numéro de notice : A2022-867 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.33012/navi.539 Date de publication en ligne : 22/05/2022 En ligne : https://doi.org/10.33012/navi.539 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102160
in Navigation : journal of the Institute of navigation > vol 69 n° 4 (Fall 2022) . - n° 539[article]Street-level traffic flow and context sensing analysis through semantic integration of multisource geospatial data / Yatao Zhang in Transactions in GIS, vol 26 n° 8 (December 2022)
PermalinkSTICC: a multivariate spatial clustering method for repeated geographic pattern discovery with consideration of spatial contiguity / Yuhao Kang in International journal of geographical information science IJGIS, vol 36 n° 8 (August 2022)
PermalinkImpact of offsets on assessing the low-frequency stochastic properties of geodetic time series / Kevin Gobron in Journal of geodesy, vol 96 n° 7 (July 2022)
PermalinkImproving remote sensing classification: A deep-learning-assisted model / Tsimur Davydzenka in Computers & geosciences, vol 164 (July 2022)
PermalinkAjustement en bloc des données de stations totales et de récepteurs GNSS dans les études de déformation / Joël Van Cranenbroeck in XYZ, n° 171 (juin 2022)
PermalinkCharacteristics of the BDS-3 multipath effect and mitigation methods using precise point positioning / Ran Lu in GPS solutions, vol 26 n° 2 (April 2022)
PermalinkOn enhanced PPP with single difference between-satellite ionospheric constraints / Yan Xiang in Navigation : journal of the Institute of navigation, vol 69 n° 1 (Spring 2022)
PermalinkEfficient variance component estimation for large-scale least-squares problems in satellite geodesy / Yufeng Nie in Journal of geodesy, vol 96 n° 2 (February 2022)
PermalinkGenerating GPS decoupled clock products for precise point positioning with ambiguity resolution / Shuai Liu in Journal of geodesy, vol 96 n° 1 (January 2022)
PermalinkPermalink