Descripteur
Documents disponibles dans cette catégorie (67)



Etendre la recherche sur niveau(x) vers le bas
Improving generalized models of forest structure in complex forest types using area- and voxel-based approaches from lidar / Andrew W. Whelan in Remote sensing of environment, vol 284 (January 2023)
![]()
[article]
Titre : Improving generalized models of forest structure in complex forest types using area- and voxel-based approaches from lidar Type de document : Article/Communication Auteurs : Andrew W. Whelan, Auteur ; Jeffery B. Cannon, Auteur ; Seth W. Bigelow, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 113362 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] diagnostic foliaire
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Géorgie (Etats-Unis)
[Termes IGN] modélisation de la forêt
[Termes IGN] Pinus palustris
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] surface forestière
[Termes IGN] volume en bois
[Termes IGN] voxelRésumé : (auteur) Modeling forest attributes using lidar data has been a useful tool for forest management but the need to correlate lidar to ground-based measurements creates challenges to modeling in diverse forest landscapes. Many lidar models have been based on metrics derived from summarizations of individual lidar returns over sample plot areas, but more recently, metrics based on summarization by volumetric pixel (voxel) have shown promise to better characterize forest structure and distinguish between diverse forest types. Voxel-based metrics may improve characterization of leaf area distribution and horizontal forest structure, which could help create general models of forest attributes applicable in complex landscapes composed of many distinct forest types. We modeled wood volume in longleaf pine woodlands and associated forests to compare how area- and voxel- based lidar metrics predicted wood volume in forest type specific and general predictive models. We created four area-based and six voxel-based metrics to fit models of wood volume using a multiplicative power function. We selected models and compared metric importance using AIC and evaluated model performance using cross-validated mean prediction error. We found that one area-based metric and four voxel-based metrics consistently improved model predictions We suggest that area-based metrics alone may have limitations for characterizing complex forest structure. Area-based summarizes of lidar returns are more heavily influenced by upper canopy returns because lidar returns attenuate below the canopy. By contrast, summarizing lidar returns into a single value per voxel prior to summarization over plots homogenizes point density, giving added weight to sub-canopy returns. Thus voxel-based metrics may be more sensitive to structural variation that may not be adequately captured by area-based metrics alone. This study highlights the potential of voxel-based metrics for characterizing complex forest structure and model generalization capable of accurate forest attribute prediction across diverse forest types. Numéro de notice : A2023-016 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113362 Date de publication en ligne : 23/11/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113362 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102150
in Remote sensing of environment > vol 284 (January 2023) . - n° 113362[article]3D semantic scene completion: A survey / Luis Roldão in International journal of computer vision, vol 130 n° 8 (August 2022)
![]()
[article]
Titre : 3D semantic scene completion: A survey Type de document : Article/Communication Auteurs : Luis Roldão, Auteur ; Raoul de Charette, Auteur ; Anne Verroust-Blondet, Auteur Année de publication : 2022 Article en page(s) : pp 1978 - 2005 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données lidar
[Termes IGN] effet de profondeur cinétique
[Termes IGN] image RVB
[Termes IGN] reconstruction d'image
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] voxelRésumé : (auteur) Semantic scene completion (SSC) aims to jointly estimate the complete geometry and semantics of a scene, assuming partial sparse input. In the last years following the multiplication of large-scale 3D datasets, SSC has gained significant momentum in the research community because it holds unresolved challenges. Specifically, SSC lies in the ambiguous completion of large unobserved areas and the weak supervision signal of the ground truth. This led to a substantially increasing number of papers on the matter. This survey aims to identify, compare and analyze the techniques providing a critical analysis of the SSC literature on both methods and datasets. Throughout the paper, we provide an in-depth analysis of the existing works covering all choices made by the authors while highlighting the remaining avenues of research. SSC performance of the SoA on the most popular datasets is also evaluated and analyzed. Numéro de notice : A2022-593 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11263-021-01504-5 Date de publication en ligne : 06/06/2022 En ligne : http://dx.doi.org/10.1007/s11263-021-01504-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101296
in International journal of computer vision > vol 130 n° 8 (August 2022) . - pp 1978 - 2005[article]Change detection in street environments based on mobile laser scanning: A fuzzy spatial reasoning approach / Joachim Gehrung in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)
![]()
[article]
Titre : Change detection in street environments based on mobile laser scanning: A fuzzy spatial reasoning approach Type de document : Article/Communication Auteurs : Joachim Gehrung, Auteur ; Marcus Hebel, Auteur ; Michael Arens, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 100019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection automatique
[Termes IGN] détection de changement
[Termes IGN] données lidar
[Termes IGN] Inférence floue
[Termes IGN] information sémantique
[Termes IGN] logique floue
[Termes IGN] milieu urbain
[Termes IGN] représentation spatiale
[Termes IGN] semis de points
[Termes IGN] voxelRésumé : (auteur) Automated change detection based on urban mobile laser scanning data is the foundation for a whole range of applications such as building model updates, map generation for autonomous driving and natural disaster assessment. The challenge with mobile LiDAR data is that various sources of error, such as localization errors, lead to uncertainties and contradictions in the derived information. This paper presents an approach to automatic change detection using a new category of generic evidence grids that addresses the above problems. Said technique, referred to as fuzzy spatial reasoning, solves common problems of state-of-the-art evidence grids and also provides a method of inference utilizing fuzzy Boolean reasoning. Based on this, logical operations are used to determine changes and combine them with semantic information. A quantitative evaluation based on a hand-annotated version of the TUM-MLS data set shows that the proposed method is able to identify confirmed and changed elements of the environment with F1-scores of 0.93 and 0.89. Numéro de notice : A2022-663 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100019 En ligne : https://doi.org/10.1016/j.ophoto.2022.100019 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101524
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 5 (August 2022) . - n° 100019[article]Beyond single receptive field: A receptive field fusion-and-stratification network for airborne laser scanning point cloud classification / Yongqiang Mao in ISPRS Journal of photogrammetry and remote sensing, vol 188 (June 2022)
![]()
[article]
Titre : Beyond single receptive field: A receptive field fusion-and-stratification network for airborne laser scanning point cloud classification Type de document : Article/Communication Auteurs : Yongqiang Mao, Auteur ; Kaiqiang chen, Auteur ; Wenhui Diao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 45 - 61 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage automatique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données laser
[Termes IGN] données localisées 3D
[Termes IGN] Perceptron multicouche
[Termes IGN] représentation parcimonieuse
[Termes IGN] réseau neuronal de graphes
[Termes IGN] semis de points
[Termes IGN] stratification de données
[Termes IGN] voxelRésumé : (Auteur) The classification of airborne laser scanning (ALS) point clouds is a critical task of remote sensing and photogrammetry fields. Although recent deep learning-based methods have achieved satisfactory performance, they have ignored the unicity of the receptive field, which makes the ALS point cloud classification remain challenging for the distinguishment of the areas with complex structures and extreme scale variations. In this article, for the objective of configuring multi-receptive field features, we propose a novel receptive field fusion-and-stratification network (RFFS-Net). With a novel dilated graph convolution (DGConv) and its extension annular dilated convolution (ADConv) as basic building blocks, the receptive field fusion process is implemented with the dilated and annular graph fusion (DAGFusion) module, which obtains multi-receptive field feature representation through capturing dilated and annular graphs with various receptive regions. The stratification of the receptive fields with point sets of different resolutions as the calculation bases is performed with Multi-level Decoders nested in RFFS-Net and driven by the multi-level receptive field aggregation loss (MRFALoss) to drive the network to learn in the direction of the supervision labels with different resolutions. With receptive field fusion-and-stratification, RFFS-Net is more adaptable to the classification of regions with complex structures and extreme scale variations in large-scale ALS point clouds. Evaluated on the ISPRS Vaihingen 3D dataset, our RFFS-Net significantly outperforms the baseline (i.e. PointConv) approach by 5.3% on mF1 and 5.4% on mIoU, accomplishing an overall accuracy of 82.1%, an mF1 of 71.6%, and an mIoU of 58.2%. The experiments show that our RFFS-Net achieves a new state-of-the-art classification performance on powerline, car, and fence classes. Furthermore, experiments on the LASDU dataset and the 2019 IEEE-GRSS Data Fusion Contest dataset show that RFFS-Net achieves a new state-of-the-art classification performance. The code is available at github.com/WingkeungM/RFFS-Net. Numéro de notice : A2022-273 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.03.019 Date de publication en ligne : 07/04/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.03.019 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100532
in ISPRS Journal of photogrammetry and remote sensing > vol 188 (June 2022) . - pp 45 - 61[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022061 SL Revue Centre de documentation Revues en salle Disponible 081-2022063 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A voxel-based method for the three-dimensional modelling of heathland from lidar point clouds: first results / N. Homainejad in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-3-2022 (2022 edition)
![]()
[article]
Titre : A voxel-based method for the three-dimensional modelling of heathland from lidar point clouds: first results Type de document : Article/Communication Auteurs : N. Homainejad, Auteur ; Sisi Zlatanova, Auteur ; Norbert Pfeifer, Auteur Année de publication : 2022 Article en page(s) : pp 697 - 704 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] classification par nuées dynamiques
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] incendie de forêt
[Termes IGN] lande
[Termes IGN] modélisation 3D
[Termes IGN] Nouvelle-Galles du Sud
[Termes IGN] segmentation en régions
[Termes IGN] semis de points
[Termes IGN] voxelRésumé : (auteur) Bushfires are an intrinsic part of the New South Wales’ (NSW) environment in Australia, especially in the Blue Mountains region (11400km2), that is dominated by fire prone vegetation that includes heathland. Many of the Australian native plants in this region are fire-prone and combustible, and many species even require fire to regenerate. The classification of the lateral and vertical distribution of living vegetation is necessary to manage the complexity of bushfires. Currently, interpretation of aerial and satellite images is the prevalent method for the classification of vegetation in NSW. The result does not represent important vegetation structural attributes, such as vegetation height, subcanopy height, and destiny. This paper presents an automated method for the three-dimensional modelling of heathland and important heathland parameters, such as heath shrub height and continuity, and sparse tree and mallee height and density in support of bushfire behaviour modelling. For this study airborne lidar point clouds with a density of 120 points per square meter are used. For the processing and modelling the study is divided into a point cloud processing phase and a voxel-based modelling phase. The point cloud processing phase consists of the normalisation of the height and extraction of the above ground vegetation, while the voxel phase consists of seeded region growing for segmentation, and K-means clustering for the classification of the vegetation into three different canopy layers: a) heath shrubs, b) sparse trees and mallee, c) tall trees. Numéro de notice : A2022-436 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.5194/isprs-annals-V-3-2022-697-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-3-2022-697-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100783
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-3-2022 (2022 edition) . - pp 697 - 704[article]Conventional and neural network-based water vapor density model for GNSS troposphere tomography / Chen Liu in GPS solutions, vol 26 n° 1 (January 2022)
PermalinkPermalinkModeling of precipitable water vapor from GPS observations using machine learning and tomography methods / Mir Reza Ghaffari Razin in Advances in space research, vol 69 n° 7 (April 2022)
PermalinkSpatiotemporal analysis of precipitable water vapor using ANFIS and comparison against voxel-based tomography and radiosonde / Mir Reza Ghaffari Razin in GPS solutions, vol 26 n° 1 (January 2022)
PermalinkIonospheric tomographic common clock model of undifferenced uncombined GNSS measurements / German Olivares-Pulido in Journal of geodesy, vol 95 n° 11 (November 2021)
PermalinkSensitivity of voxel-based estimations of leaf area density with terrestrial LiDAR to vegetation structure and sampling limitations: A simulation experiment / Maxime Soma in Remote sensing of environment, vol 257 (May 2021)
PermalinkAleatoric uncertainty estimation for dense stereo matching via CNN-based cost volume analysis / Max Mehltretter in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkPermalinkLearning-based representations and methods for 3D shape analysis, manipulation and reconstruction / Marie-Julie Rakotosaona (2021)
PermalinkHierarchical instance recognition of individual roadside trees in environmentally complex urban areas from UAV laser scanning point clouds / Yongjun Wang in ISPRS International journal of geo-information, vol 9 n° 10 (October 2020)
Permalink