Descripteur


Etendre la recherche sur niveau(x) vers le bas
Analysis of plot-level volume increment models developed from machine learning methods applied to an uneven-aged mixed forest / Seyedeh Kosar Hamidi in Annals of Forest Science [en ligne], vol 78 n° 1 (March 2021)
![]()
[article]
Titre : Analysis of plot-level volume increment models developed from machine learning methods applied to an uneven-aged mixed forest Type de document : Article/Communication Auteurs : Seyedeh Kosar Hamidi, Auteur ; Eric K. Zenner, Auteur ; Mahmoud Bayat, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 4 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse diachronique
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] dynamique de la végétation
[Termes descripteurs IGN] écosystème forestier
[Termes descripteurs IGN] forêt inéquienne
[Termes descripteurs IGN] Iran
[Termes descripteurs IGN] modèle de croissance
[Termes descripteurs IGN] peuplement mélangé
[Termes descripteurs IGN] plus proche voisin (algorithme)
[Termes descripteurs IGN] régression linéaire
[Termes descripteurs IGN] réseau neuronal artificielRésumé : (auteur) Key message: We modeled 10-year net stand volume growth with four machine learning (ML) methods, i.e., artificial neural networks (ANN), support vector machines (SVM), random forests (RF), and nearest neighbor analysis (NN), and with linear regression analysis. Incorporating interactions of multiple variables, the ML methods ANN and SVM predicted nonlinear system behavior and unraveled complex relations with greater accuracy than regression analysis.
Context: Investigating the quantitative and qualitative characteristics of short-term forest dynamics is essential for testing whether the desired goals in forest-ecosystem conservation and restoration are achieved. Inventory data from the Jojadeh section of the Farim Forest located in the uneven-aged, mixed Hyrcanian Forest were used to model and predict 10-year net annual stand volume increment with new machine learning technologies.
Aims: The main objective of this study was to predict net annual stand volume increment as the preeminent factor of forest growth and yield models.
Methods: In the current study, volume increment was modeled from two consecutive inventories in 2003 and 2013 using four machine learning techniques that used physiographic data of the forest as input for model development: (i) artificial neural networks (ANN), (ii) support vector machines (SVM), (iii) random forests (RF), and (iv) nearest neighbor analysis (NN). Results from the various machine learning technologies were compared against results produced with regression analysis.
Results: ANNs and SVMs with a linear kernel function that incorporated field-measurements of terrain slope and aspect as input variables were able to predict plot-level volume increment with a greater accuracy (94%) than regression analysis (87%).
Conclusion: These results provide compelling evidence for the added utility of machine learning technologies for modeling plot-level volume increment in the context of forest dynamics and management.Numéro de notice : A2021-071 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-020-01011-6 date de publication en ligne : 12/01/2021 En ligne : https://doi.org/10.1007/s13595-020-01011-6 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96794
in Annals of Forest Science [en ligne] > vol 78 n° 1 (March 2021) . - n° 4[article]Damage detection using SAR coherence statistical analysis, application to Beirut, Lebanon / Tamer ElGharbawi in ISPRS Journal of photogrammetry and remote sensing, Vol 173 (March 2021)
![]()
[article]
Titre : Damage detection using SAR coherence statistical analysis, application to Beirut, Lebanon Type de document : Article/Communication Auteurs : Tamer ElGharbawi, Auteur ; Fawzi Zarzoura, Auteur Année de publication : 2021 Article en page(s) : pp 1 - 9 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] analyse de données
[Termes descripteurs IGN] Beyrouth
[Termes descripteurs IGN] catastrophe
[Termes descripteurs IGN] corrélation
[Termes descripteurs IGN] décorrélation
[Termes descripteurs IGN] dommage matériel
[Termes descripteurs IGN] étude d'impact
[Termes descripteurs IGN] filtre passe-haut
[Termes descripteurs IGN] image radar moiréeRésumé : (auteur) Early well-coordinated response during unexpected catastrophes can define the near future of the stricken regions. Beirut city, Lebanon, was one of the unfortunate regions to endure the horrific ordeal of an unexpected explosion that caused thousands of human casualties, billions of dollars’ worth of property damage, and destroyed its main maritime entry point. In this paper, we identify damaged regions and classify their severity using a simple and robust SAR correlation technique. We employ phase coherence and amplitude correlation of a SAR stack to estimate pixels’ damage probability using hypothesis testing. We use a spatial phase filter applied in the frequency domain to improve the estimated coherence by removing the spatial decorrelation component of the total estimated coherence. Using this filter improved the coherence of nearly 44.2% of pixels identified with coherence less than 0.25 in our study area. The estimated damaged regions are presented and compared against a damage map issued by Advanced Rapid Imaging and Analysis (ARIA) which shows an average agreement of 68.3%. Also, a fine agreement was observed when compared to optical satellite images. Numéro de notice : A2021-100 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.00 date de publication en ligne : 15/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96871
in ISPRS Journal of photogrammetry and remote sensing > Vol 173 (March 2021) . - pp 1 - 9[article]A multi-criteria analysis of forest restoration strategies to improve the ecosystem services supply: an application in Central Italy / Alessandro Paletto in Annals of Forest Science [en ligne], vol 78 n° 1 (March 2021)
![]()
[article]
Titre : A multi-criteria analysis of forest restoration strategies to improve the ecosystem services supply: an application in Central Italy Type de document : Article/Communication Auteurs : Alessandro Paletto, Auteur ; Elisa Pieratti, Auteur ; Isabella De Meo, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 7 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] analyse multicritère
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] éclaircie (sylviculture)
[Termes descripteurs IGN] Italie
[Termes descripteurs IGN] marché du bois
[Termes descripteurs IGN] puits de carbone
[Termes descripteurs IGN] reboisement
[Termes descripteurs IGN] service écosystémique
[Termes descripteurs IGN] volume en bois
[Vedettes matières IGN] SylvicultureRésumé : (auteur) Key message: A multi-criteria analysis can be an interesting tool to assess the effects of silvicultural treatments on ecosystem services supply. In the degraded forests, thinning has a positive effect on the provision of ecosystem services such as timber and bioenergy production, climate change mitigation, and recreational attractiveness.
Context: The Millennium Ecosystem Assessment highlights the importance of the ecosystem services for human well-being and for maintaining conditions for life on Earth. Silvicultural treatments can improve the provision of ecosystem services to increase local communities’ well-being.
Aims: The aim of this study is to understand the effects of two-forest restoration practices (selective thinning and thinning from below) on three ecosystem services (wood production, climate change mitigation, and recreational opportunities) in an Italian case study.
Methods: A multi-criteria decision analysis (MCDA) was performed to compare the effects of three forest restoration scenarios (baseline, selective thinning, thinning from below) on ecosystem services. Wood production was estimated considering the local market prices and the wood volumes harvested, while climate change mitigation was quantified through the C-stock and C-sequestration changes in carbon pools due to the silvicultural treatments. The recreational activities were assessed through a questionnaire survey. A sample of 200 visitors was interviewed face-to-face to estimate the impact of thinning on recreational activities.
Results: The results of the MCDA show that the selective thinning scenario is the optimal forest restoration practice to increase the recreational attractiveness and the wood production in the study area.
Conclusion: The results concerning the effects of the silvicultural treatments on ecosystem services supply are an important tool to support decision makers.Numéro de notice : A2021-104 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-020-01020-5 date de publication en ligne : 18/01/2021 En ligne : https://doi.org/10.1007/s13595-020-01020-5 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96887
in Annals of Forest Science [en ligne] > vol 78 n° 1 (March 2021) . - n° 7[article]PBNet: Part-based convolutional neural network for complex composite object detection in remote sensing imagery / Xian Sun in ISPRS Journal of photogrammetry and remote sensing, Vol 173 (March 2021)
![]()
[article]
Titre : PBNet: Part-based convolutional neural network for complex composite object detection in remote sensing imagery Type de document : Article/Communication Auteurs : Xian Sun, Auteur ; Peijin Wang, Auteur ; Cheng Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 50 - 65 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse contextuelle
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] objet géographique complexe
[Termes descripteurs IGN] rectangle englobant minimumRésumé : (auteur) In recent years, deep learning-based algorithms have brought great improvements to rigid object detection. In addition to rigid objects, remote sensing images also contain many complex composite objects, such as sewage treatment plants, golf courses, and airports, which have neither a fixed shape nor a fixed size. In this paper, we validate through experiments that the results of existing methods in detecting composite objects are not satisfying enough. Therefore, we propose a unified part-based convolutional neural network (PBNet), which is specifically designed for composite object detection in remote sensing imagery. PBNet treats a composite object as a group of parts and incorporates part information into context information to improve composite object detection. Correct part information can guide the prediction of a composite object, thus solving the problems caused by various shapes and sizes. To generate accurate part information, we design a part localization module to learn the classification and localization of part points using bounding box annotation only. A context refinement module is designed to generate more discriminative features by aggregating local context information and global context information, which enhances the learning of part information and improve the ability of feature representation. We selected three typical categories of composite objects from a public dataset to conduct experiments to verify the detection performance and generalization ability of our method. Meanwhile, we build a more challenging dataset about a typical kind of complex composite objects, i.e., sewage treatment plants. It refers to the relevant information from authorities and experts. This dataset contains sewage treatment plants in seven cities in the Yangtze valley, covering a wide range of regions. Comprehensive experiments on two datasets show that PBNet surpasses the existing detection algorithms and achieves state-of-the-art accuracy. Numéro de notice : A2021-105 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.015 date de publication en ligne : 16/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.015 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96891
in ISPRS Journal of photogrammetry and remote sensing > Vol 173 (March 2021) . - pp 50 - 65[article]Coastal water remote sensing from sentinel-2 satellite data using physical, statistical, and neural network retrieval approach / Frank S. Marzano in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
![]()
[article]
Titre : Coastal water remote sensing from sentinel-2 satellite data using physical, statistical, and neural network retrieval approach Type de document : Article/Communication Auteurs : Frank S. Marzano, Auteur ; Michele Iacobelli, Auteur ; Massimo Orlandi, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 915 - 928 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Adriatique, mer
[Termes descripteurs IGN] bathymétrie
[Termes descripteurs IGN] chlorophylle
[Termes descripteurs IGN] correction atmosphérique
[Termes descripteurs IGN] couleur de l'océan
[Termes descripteurs IGN] eaux côtières
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] incertitude spectrale
[Termes descripteurs IGN] matière organique
[Termes descripteurs IGN] Méditerranée, mer
[Termes descripteurs IGN] réseau neuronal artificielRésumé : (auteur) Recent optical remote sensing satellite missions, such as Sentinel-2 with the MultiSpectral Imager (MSI) onboard, allow the estimation of coastal water key parameters with very high spatial resolutions (down to 10 m). In this article, multiple approaches are proposed for retrieving chlorophyll-a (Chl-a) and total suspended matter (TSM) along the Adriatic and Tyrrhenian coasts in Italy, using both empirical and model-based frameworks to design regressive and neural network (NN) estimation methods. The latter proves to be more accurate on a regional scale, where standard ocean color physical models exhibit high uncertainty in their local parameterization due to the complex spectral characteristics of the observed scene. Retrieval results are encouraging for Chl-a with a coefficient of determination R2 up to 0.72 with a root-mean-square error (RMSE) of 0.33 mg m−3 , using an empirical NN. The TSM algorithms exhibit higher uncertainty, mainly due to scarcity of in situ measurements and model parameterizations, with R2=0.52 and RMSE = 1.95 g/m 3 using NNs. The bio-optical model, used for the development of model-based algorithms, shows some inadequacies in representing the inherent and apparent optical properties for the case study areas, especially considering the different spectral features between the oligotrophic Tyrrhenian Sea and the eutrophic Adriatic Sea. This study confirms the potential of Sentinel-2 MSI products for coastal water monitoring, but it also highlights key issues to be further tackled such as the atmospheric correction impact, the need of reliable in situ measurements, and possible bathymetry effects near the shores. Numéro de notice : A2021-110 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2980941 date de publication en ligne : 09/12/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2980941 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96912
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 915 - 928[article]A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping / Zhice Fang in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
PermalinkComprehensive time-series analysis of bridge deformation using differential satellite radar interferometry based on Sentinel-1 / Matthias Schlögl in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
PermalinkExtracting knowledge from legacy maps to delineate eco-geographical regions / Lin Yang in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
PermalinkGeographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling / Stefanos Georganos in Geocarto international, vol 36 n° 2 ([01/02/2021])
PermalinkA GIS- and AHP-based approach to map fire risk: a case study of Kuan Kreng peat swamp forest, Thailand / Narissara Nuthammachot in Geocarto international, vol 36 n° 2 ([01/02/2021])
PermalinkLand cover harmonization using Latent Dirichlet Allocation / Zhan Li in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
PermalinkA spatiotemporal structural graph for characterizing land cover changes / Bin Wu in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
PermalinkSpruce budworm tree host species distribution and abundance mapping using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery / Rajeev Bhattarai in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
PermalinkTropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning / Maryam Pourshamsi in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
PermalinkIndividual tree diameter growth modeling system for Dalat pine (Pinus dalatensis Ferré) of the upland mixed tropical forests / Bao Huy in Forest ecology and management, vol 480 (15 January 2021)
Permalink