Descripteur
Documents disponibles dans cette catégorie (490)



Etendre la recherche sur niveau(x) vers le bas
How do voice-assisted digital maps influence human wayfinding in pedestrian navigation? / Yawei Xu in Cartography and Geographic Information Science, vol 49 n° 3 (May 2022)
![]()
[article]
Titre : How do voice-assisted digital maps influence human wayfinding in pedestrian navigation? Type de document : Article/Communication Auteurs : Yawei Xu, Auteur ; Tong Qin, Auteur ; Yulin Wu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 271 - 287 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie numérique
[Termes IGN] acquisition de connaissances
[Termes IGN] cognition
[Termes IGN] comportement
[Termes IGN] itinéraire piétionnier
[Termes IGN] navigation pédestre
[Termes IGN] oculométrie
[Termes IGN] orientation
[Termes IGN] Pékin (Chine)
[Termes IGN] questionnaireRésumé : (auteur) Voice-assisted digital maps have become mainstream navigation aids for pedestrian navigation. Although these maps are widely studied and applied, it is still unclear how they affect human behavior and spatial knowledge acquisition. In this study, we recruited thirty-three college students to carry out an outdoor wayfinding experiment. We compared the effects of voice-assisted digital maps with those of digital maps without voice instructions and paper maps by using eye tracking, sketch maps, questionnaires and interviews. The results show that, compared to the other map types, voice-assisted digital maps can help users reach their destinations more quickly and pay more attention to moving objects, thereby increasing the comfort levels of participants. However, the efficiency of voice-assisted maps on route memory tasks does not rival that of paper maps. Overall, the use of voice-assisted digital maps saves time but may reduce pedestrians’ spatial knowledge acquisition. The results of this study reveal the influence of voice on pedestrian wayfinding and deepen the scientific understanding of the multimedia navigation mode in shaping human spatial ability. Numéro de notice : A2022-295 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2021.2017798 Date de publication en ligne : 13/01/2022 En ligne : https://doi.org/10.1080/15230406.2021.2017798 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100347
in Cartography and Geographic Information Science > vol 49 n° 3 (May 2022) . - pp 271 - 287[article]Detecting individuals' spatial familiarity with urban environments using eye movement data / Hua Liao in Computers, Environment and Urban Systems, vol 93 (April 2022)
![]()
[article]
Titre : Detecting individuals' spatial familiarity with urban environments using eye movement data Type de document : Article/Communication Auteurs : Hua Liao, Auteur ; Wendi Zhao, Auteur ; Changbo Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101758 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse visuelle
[Termes IGN] apprentissage automatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] navigation pédestre
[Termes IGN] oculométrie
[Termes IGN] service fondé sur la position
[Termes IGN] zone urbaine
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) The spatial familiarity of environments is an important high-level user context for location-based services (LBS). Knowing users' familiarity level of environments is helpful for enabling context-aware LBS that can automatically adapt information services according to users' familiarity with the environment. Unlike state-of-the-art studies that used questionnaires, sketch maps, mobile phone positioning (GPS) data, and social media data to measure spatial familiarity, this study explored the potential of a new type of sensory data - eye movement data - to infer users' spatial familiarity of environments using a machine learning approach. We collected 38 participants' eye movement data when they were performing map-based navigation tasks in familiar and unfamiliar urban environments. We trained and cross-validated a random forest classifier to infer whether the users were familiar or unfamiliar with the environments (i.e., binary classification). By combining basic statistical features and fixation semantic features, we achieved a best accuracy of 81% in a 10-fold classification and 70% in the leave-one-task-out (LOTO) classification. We found that the pupil diameter, fixation dispersion, saccade duration, fixation count and duration on the map were the most important features for detecting users' spatial familiarity. Our results indicate that detecting users' spatial familiarity from eye tracking data is feasible in map-based navigation and only a few seconds (e.g., 5 s) of eye movement data is sufficient for such detection. These results could be used to develop context-aware LBS that adapt their services to users' familiarity with the environments. Numéro de notice : A2022-121 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101758 Date de publication en ligne : 21/01/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101758 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99663
in Computers, Environment and Urban Systems > vol 93 (April 2022) . - n° 101758[article]Mining crowdsourced trajectory and geo-tagged data for spatial-semantic road map construction / Jincai Huang in Transactions in GIS, vol 26 n° 2 (April 2022)
![]()
[article]
Titre : Mining crowdsourced trajectory and geo-tagged data for spatial-semantic road map construction Type de document : Article/Communication Auteurs : Jincai Huang, Auteur ; Yunfei Zhang, Auteur ; Min Deng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 735 - 754 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Vedettes matières IGN] Géomatique
[Termes IGN] base de données routières
[Termes IGN] carrefour
[Termes IGN] carte routière
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données localisées des bénévoles
[Termes IGN] données routières
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] information sémantique
[Termes IGN] intégration de données
[Termes IGN] navigation automobile
[Termes IGN] vitesse
[Termes IGN] Wuhan (Chine)Résumé : (auteur) The road map is a fundamental part of a spatial data infrastructure (SDI), and is widely applied in navigation, smart transportation, and mobile location services. Recently, with the ubiquity of positioning devices, crowdsourced trajectories have become a significant data resource for road map construction and updating. However, existing trajectory-based methods mainly place emphasis on extracting road geometry features and may ignore continuous updating of road semantic information. Hence, we propose a divide-and-conquer method to construct a spatial-semantic road map by incorporating multiple data sources (e.g., crowdsourced trajectories and geo-tagged data). The proposed method divides road map construction into two sub-tasks, road structure reconstruction and road attributes inference. The road structure reconstruction process starts to partition raw trajectory data into different cliques of roadways and road intersections, and then extracts various targeted road structures by analyzing the turning modes in different trajectory cliques. The road attributes inference process aims to infer three pieces of crucial semantic information about road speeds, turning rules, and road names from crowdsourced trajectories and geo-tagged data. The case studies in Wuhan were examined to illustrate that the proposed method can construct a routable road map with enhanced geometric structures and rich semantic information, providing a beneficial data solution for car navigation and SDI update. Numéro de notice : A2022-364 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12879 Date de publication en ligne : 17/12/2021 En ligne : https://doi.org/10.1111/tgis.12879 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100583
in Transactions in GIS > vol 26 n° 2 (April 2022) . - pp 735 - 754[article]Mapping global flying aircraft activities using Landsat 8 and cloud computing / Fen Zhao in ISPRS Journal of photogrammetry and remote sensing, vol 184 (February 2022)
![]()
[article]
Titre : Mapping global flying aircraft activities using Landsat 8 and cloud computing Type de document : Article/Communication Auteurs : Fen Zhao, Auteur ; Lang Xia, Auteur ; Arve Kylling, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 19 - 30 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aéronef
[Termes IGN] analyse spatio-temporelle
[Termes IGN] aviation civile
[Termes IGN] carte thématique
[Termes IGN] climat
[Termes IGN] détection d'objet
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-OLI
[Termes IGN] informatique en nuage
[Termes IGN] navigation aérienne
[Termes IGN] trafic aérienRésumé : (auteur) Satellite-based remote sensing might provide a potential way for monitoring the global flight activities and their environment impacts, while the remote sensing community pays less attention on it. In this study, we presented a flying aircraft detection algorithm which effectively handles the noise on Landsat 8 OLI cirrus band caused by energetic particles in the South Atlantic Anomaly region, and a new framework based on cloud infrastructure was proposed to map global flying aircraft activities from 2013 to 2020 using Landsat 8 Operational Land Imager (OLI) data. Validation was performed for 254 scenes recorded for various cloudy and surface conditions and vapor contents. The overall percentages of false alarms and omissions for these validation images were 5.37% and 7.80%, respectively. Limited to the resolution of Landsat data, cloud, the size and flight altitude of the aircraft, 42.99% flying aircraft were undetected compared with the FlightRadar24. Instead of using the Google Earth Engine, we employed more flexible cloud computing techniques, Google Cloud Storage and Google Calculation Engine, to construct our framework for the larger volume data. A total of 1.94 million Landsat images were analyzed to obtain the activities maps, and the results showed that globally flying aircraft increased by 25.85% from 2014 to 2019 (the year 2013 was excluded for the low coverage of Landsat scenes), with an annual rate of 4.31%. In 2020, flying aircraft were reduced by 40% compared with 2019 due to the influence of COVID-19 and traveling restrictions, and Europe was the most severely affected by COVID-19, with an 84.59% decline of flying aircraft in April 2020. This study provides a unique long-term supplement to monitor aviation activities and their climate impact. Numéro de notice : A2022-090 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.12.003 Date de publication en ligne : 15/12/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.12.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99506
in ISPRS Journal of photogrammetry and remote sensing > vol 184 (February 2022) . - pp 19 - 30[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022021 SL Revue Centre de documentation Revues en salle Disponible 081-2022023 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2022022 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Attributing pedestrian networks with semantic information based on multi-source spatial data / Xue Yang in International journal of geographical information science IJGIS, vol 36 n° 1 (January 2022)
![]()
[article]
Titre : Attributing pedestrian networks with semantic information based on multi-source spatial data Type de document : Article/Communication Auteurs : Xue Yang, Auteur ; Kathleen Stewart, Auteur ; Mengyuan Fang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 31 - 54 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] données localisées des bénévoles
[Termes IGN] données multisources
[Termes IGN] extraction de données
[Termes IGN] itinéraire piétionnier
[Termes IGN] navigation pédestre
[Termes IGN] ondelette
[Termes IGN] réseau routier
[Termes IGN] segmentation sémantique
[Termes IGN] utilisation du sol
[Termes IGN] Wuhan (Chine)Résumé : (auteur) The lack of associating pedestrian networks, i.e. the paths and roads used for non-vehicular travel, with information about semantic attribution is a major weakness for many applications, especially those supporting accurate pedestrian routing. Researchers have developed various algorithms to generate pedestrian walkways based on datasets, including high-resolution images, existing map databases, and GPS data; however, the semantic attribution of pedestrian walkways is often ignored. The objective of our study is to automatically extract semantic information including incline values and the different categories of pedestrian paths from multi-source spatial data, such as crowdsourced GPS tracking data, land use data, and motor vehicle road (MVR) networks. Incline values for each pedestrian path were derived from tracking data through elevation filtering using wavelet theory and a similarity-based map-matching method. To automatically categorize pedestrian paths into five classes including sidewalk, crosswalk, entrance walkway, indoor path, and greenway, we developed a hierarchical strategy of spatial analysis using land use data and MVR networks. The effectiveness of our proposed method is demonstrated using real datasets including GPS tracking data collected by volunteers, land use data acquired from OpenStreetMap, and MVR network data downloaded from Gaode Map. Numéro de notice : A2022-083 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1902530 En ligne : https://doi.org/10.1080/13658816.2021.1902530 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99480
in International journal of geographical information science IJGIS > vol 36 n° 1 (January 2022) . - pp 31 - 54[article]Pedestrian trajectory prediction with convolutional neural networks / Simone Zamboni in Pattern recognition, vol 121 (January 2022)
PermalinkSimulation of dispersion effects by considering interactions of pedestrians and bicyclists using an agent space model / Mingwei Liu in Computers, Environment and Urban Systems, vol 91 (January 2022)
PermalinkRelevés d’obstacles à la navigation aérienne au service de l’information aéronautique / Olivier de Joinville in XYZ, n° 169 (décembre 2021)
PermalinkImpact of travel time uncertainties on modeling of spatial accessibility: a comparison of street data sources / Yan Lin in Cartography and Geographic Information Science, vol 48 n° 6 (October 2021)
PermalinkPedestrian fowl prediction in open public places using graph convolutional network / Menghang Liu in ISPRS International journal of geo-information, vol 10 n° 7 (July 2021)
PermalinkMulti-GNSS PPP/INS tightly coupled integration with atmospheric augmentation and its application in urban vehicle navigation / Shengfeng Gu in Journal of geodesy, vol 95 n° 6 (June 2021)
PermalinkWhat is the difference between augmented reality and 2D navigation electronic maps in pedestrian wayfinding? / Weihua Dong in Cartography and Geographic Information Science, vol 48 n° 3 (May 2021)
PermalinkModelling the effect of landmarks on pedestrian dynamics in urban environments / Gabriele Filomena in Computers, Environment and Urban Systems, vol 86 (March 2021)
PermalinkPassive radar imaging of ship targets with GNSS signals of opportunity / Debora Pastina in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkUsing multi-agent simulation to predict natural crossing points for pedestrians and choose locations for mid-block crosswalks / Egor Smirrnov in Geo-spatial Information Science, vol 23 n° 4 (December 2020)
Permalink