Descripteur
Termes descripteurs IGN > 1- Outils - instruments et méthodes > Instrument > véhicule > véhicule automobile
véhicule automobileSynonyme(s)AutomobileVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
A history of laser scanning, Part 1: space and defense applications / Adam P. Spring in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 7 (July 2020)
![]()
[article]
Titre : A history of laser scanning, Part 1: space and defense applications Type de document : Article/Communication Auteurs : Adam P. Spring, Auteur Année de publication : 2020 Article en page(s) : pp 419-429 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] balayage laser
[Termes descripteurs IGN] capteur à balayage
[Termes descripteurs IGN] défense nationale
[Termes descripteurs IGN] histoire des sciences et techniques
[Termes descripteurs IGN] navigation autonome
[Termes descripteurs IGN] secteur spatial
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] véhicule sans piloteRésumé : (Auteur) This article presents the origins and evolution of midrange terrestrial laser scanning (TLS), spanning primarily from the 1950s to the time of publication. Particular attention is given to developments in hardware and software that document the physical dimensions of a scene as a point cloud. These developments include parameters for accuracy, repeatability, and resolution in the midrange—millimeter and centimeter levels when recording objects at building and landscape scales up to a kilometer away. The article is split into two parts: Part one starts with early space and defense applications, and part two examines the survey applications that formed around TLS technologies in the 1990s. The origins of midrange TLS, ironically, begin in space and defense applications, which shaped the development of sensors and information processing via autonomous vehicles. Included are planetary rovers, space shuttles, robots, and land vehicles designed for relative navigation in hostile environments like space and war zones. Key people in the midrange TLS community were consulted throughout the 10-year period over which this article was written. A multilingual and multidisciplinary literature review—comprising media written or produced in Chinese, English, French, German, Japanese, Italian, and Russian—was also an integral part of this research. Numéro de notice : A2020-381 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.7.419 date de publication en ligne : 01/07/2020 En ligne : https://doi.org/10.14358/PERS.86.7.419 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95426
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 7 (July 2020) . - pp 419-429[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020071 SL Revue Centre de documentation Revues en salle Disponible A hybrid deep learning–based model for automatic car extraction from high-resolution airborne imagery / Mehdi Khoshboresh Masouleh in Applied geomatics, vol 12 n° 2 (June 2020)
![]()
[article]
Titre : A hybrid deep learning–based model for automatic car extraction from high-resolution airborne imagery Type de document : Article/Communication Auteurs : Mehdi Khoshboresh Masouleh, Auteur ; Reza Shah-Hosseini, Auteur Année de publication : 2020 Article en page(s) : pp 107 - 119 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] extraction automatique
[Termes descripteurs IGN] gestion de trafic
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image aérienne
[Termes descripteurs IGN] modèle orienté objet
[Termes descripteurs IGN] orthophotographie
[Termes descripteurs IGN] segmentation sémantique
[Termes descripteurs IGN] trafic routier
[Termes descripteurs IGN] véhicule automobileRésumé : (auteur) Automatic car extraction (ACE) from high-resolution airborne imagery (i.e., true-orthophoto) has been a hot research topic in the field of photogrammetry and machine learning. ACE from high-resolution airborne imagery is the most suitable method for control and monitoring practices in large cities such as traffic management. The use of deep learning–based feature extraction methods, such as convolutional neural networks, have been providing state-of-the-art performance in the last few years, particularly, these techniques have been successfully applied to automatic object extraction from images. In this paper, we proposed a novel hybrid method to take advantage of the semantic segmentation of high-resolution airborne imagery to ACE that is realized based on the combination of deep convolutional neural networks and restricted Boltzmann machine (RBM). This hybrid method is called RBMDeepNet. We trained and tested our model on the ISPRS Potsdam and Vaihingen benchmark datasets (non-big data) which is more challenging for ACE. Here, Potsdam data is a true-color dataset, and Vaihingen data is a false-color dataset. The results obtained in the present study showed that the proposed method for ACE from high-resolution airborne imagery achieves a 7% improvement in accuracy with about 10% improvement in processing time compared to similar methods. Numéro de notice : A2020-558 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s12518-019-00285-4 date de publication en ligne : 06/08/2019 En ligne : https://doi.org/10.1007/s12518-019-00285-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95868
in Applied geomatics > vol 12 n° 2 (June 2020) . - pp 107 - 119[article]A method for urban population density prediction at 30m resolution / Krishnachandran Balakrishnan in Cartography and Geographic Information Science, vol 47 n° 3 (May 2020)
![]()
[article]
Titre : A method for urban population density prediction at 30m resolution Type de document : Article/Communication Auteurs : Krishnachandran Balakrishnan, Auteur Année de publication : 2020 Article en page(s) : pp 193 - 213 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] densité de population
[Termes descripteurs IGN] gestion urbaine
[Termes descripteurs IGN] hauteur du bâti
[Termes descripteurs IGN] image Cartosat-1
[Termes descripteurs IGN] Inde
[Termes descripteurs IGN] logiciel de traitement d'image
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] modélisation du bâti
[Termes descripteurs IGN] système d'information géographique
[Termes descripteurs IGN] véhicule automobileRésumé : (auteur) This paper proposes a new method for urban population density prediction at 30 m resolution. Using data for Bangalore, the paper demonstrates that population within each 30 m residential built-up cell can be modeled as a function of cell-level data on street density and building heights and ward-level data on car ownership. Building-height data were generated from Cartosat-1 stereo imagery using an open-source satellite stereo image processing software. Using this building-height data in conjunction with the other datasets, the paper demonstrates that a 30 m resolution population density surface can be generated such that, when summed to the ward level, the median absolute percentage error between predicted population and known census population at the ward level is 8.29%. The paper also shows that the relationship between population density, street density, building height, and ward level car ownership is spatially non-stationary. A fine-grained understanding of urban population densities, as enabled by the proposed method, can be beneficial to research, policy, and practice related to cities. Numéro de notice : A2020-168 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2019.1687014 date de publication en ligne : 18/12/2019 En ligne : https://doi.org/10.1080/15230406.2019.1687014 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94839
in Cartography and Geographic Information Science > vol 47 n° 3 (May 2020) . - pp 193 - 213[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2020031 SL Revue Centre de documentation Revues en salle Disponible Suitable location selection for the electric vehicle fast charging station with AHP and fuzzy AHP methods using GIS / Dogus Guler in Annals of GIS, vol 26 n° 2 (April 2020)
![]()
[article]
Titre : Suitable location selection for the electric vehicle fast charging station with AHP and fuzzy AHP methods using GIS Type de document : Article/Communication Auteurs : Dogus Guler, Auteur ; Tahsin Yomralioglu, Auteur Année de publication : 2020 Article en page(s) : pp 169 - 189 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes descripteurs IGN] analyse multicritère
[Termes descripteurs IGN] approche holistique
[Termes descripteurs IGN] électricité
[Termes descripteurs IGN] outil d'aide à la décision
[Termes descripteurs IGN] pondération
[Termes descripteurs IGN] processus d'analyse hiérarchisée floue
[Termes descripteurs IGN] station
[Termes descripteurs IGN] système d'information géographique
[Termes descripteurs IGN] véhicule automobile
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) Electric vehicles arouse interest since they not only contribute economies of countries in the context of dependency to oil but also support to more livable and sustainable urban areas. The location selection of electric vehicle charging stations is one of the most vital topics in order to enhance the use of electric vehicles. In this sense, the aim of this paper is to propose an approach that integrates Geographic Information System (GIS) techniques and Multi-Criteria Decision Making (MCDM) methods for finding suitable locations of the electric vehicle charging stations. In this regard, the Analytic Hierarchy Process (AHP) and the Fuzzy Analytic Hierarchy Process (FAHP) methods are used to calculate the weights of criteria. While the two different weights for each criterion are obtained by means of AHP in terms of environmental impact and accessibility, another weight for each criterion is obtained as a means of applying the FAHP. The intersection of three different suitability indexes is determined so as to achieve a holistic, credible result. The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is used to rank the alternative locations. The results show that the proposed approach offers a notable solution to be selected suitable charging station locations. Moreover, policymakers and administrators could benefit from these results in order to make efficient decisions for forward planning and strategies. Numéro de notice : A2020-322 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/19475683.2020.1737226 date de publication en ligne : 09/03/2020 En ligne : https://doi.org/10.1080/19475683.2020.1737226 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95189
in Annals of GIS > vol 26 n° 2 (April 2020) . - pp 169 - 189[article]Scene context-driven vehicle detection in high-resolution aerial images / Chao Tao in IEEE Transactions on geoscience and remote sensing, Vol 57 n° 10 (October 2019)
![]()
[article]
Titre : Scene context-driven vehicle detection in high-resolution aerial images Type de document : Article/Communication Auteurs : Chao Tao, Auteur ; Li Mi, Auteur ; Yansheng Li, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 7339 - 7351 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image aérienne
[Termes descripteurs IGN] objet mobile
[Termes descripteurs IGN] véhicule automobileRésumé : (auteur) As the spatial resolution of remote sensing images is improving gradually, it is feasible to realize “scene-object” collaborative image interpretation. Unfortunately, this idea is not fully utilized in vehicle detection from high-resolution aerial images, and most of the existing methods may be promoted by considering the variability of vehicle spatial distribution in different image scenes and treating vehicle detection tasks scene-specific. With this motivation, a scene context-driven vehicle detection method is proposed in this paper. At first, we perform scene classification using the deep learning method and, then, detect vehicles in roads and parking lots separately through different vehicle detectors. Afterward, we further optimize the detection results using different postprocessing rules according to different scene types. Experimental results show that the proposed approach outperforms the state-of-the-art algorithms in terms of higher detection accuracy rate and lower false alarm rate. Numéro de notice : A2019-535 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2912985 date de publication en ligne : 03/06/2019 En ligne : http://doi.org/10.1109/TGRS.2019.2912985 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94131
in IEEE Transactions on geoscience and remote sensing > Vol 57 n° 10 (October 2019) . - pp 7339 - 7351[article]Development and evaluation of a deep learning model for real-time ground vehicle semantic segmentation from UAV-based thermal infrared imagery / Mehdi Khoshboresh Masouleh in ISPRS Journal of photogrammetry and remote sensing, vol 155 (September 2019)
PermalinkVehicle detection in aerial images / Michael Ying Yang in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 4 (avril 2019)
PermalinkTowards visual urban scene understanding for autonomous vehicle path tracking using GPS positioning data. / Citlalli Gamez serna (2019)
PermalinkDe la navigation connectée à la voiture autonome - partie 2 Et mon tout est un véhicule autonome / Hubert d' Erceville in SIGmag, n° 17 (juin 2018)
PermalinkDe la navigation connectée à la voiture autonome - partie 1 la navigation au coeur de l'automobile / Hubert d' Erceville in SIGmag, n° 16 (mars 2018)
PermalinkDeep learning based vehicular mobility models for intelligent transportation systems / Jian Zhang (2018)
PermalinkAn analysis of movement patterns between zones using taxi GPS data / Zhanlong Chen in Transactions in GIS, vol 21 n° 6 (December 2017)
PermalinkGenerating a hazard map of dynamic objects using lidar mobile mapping / Alexander Schlichting in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 12 (December 2016)
PermalinkQuelle carte numérique pour le véhicule autonome ? / Pascal Vasseur in Transport environnement circulation TEC, n° 231 (novembre 2016)
PermalinkModeling spatiotemporal topological relationships between moving object trajectories along road networks based on region connection calculus / Linbing Ma in Cartography and Geographic Information Science, Vol 43 n° 4 (September 2016)
Permalink