Descripteur
Termes descripteurs IGN > imagerie > image numérique > pixel > valeur radiométrique > niveau de gris (image)
niveau de gris (image)Voir aussi |



Etendre la recherche sur niveau(x) vers le bas
Extraction of built-up areas from Landsat-8 OLI data based on spectral-textural information and feature selection using support vector machine method / Vijendra Singh Bramhe in Geocarto international, vol 35 n° 10 ([01/08/2020])
![]()
[article]
Titre : Extraction of built-up areas from Landsat-8 OLI data based on spectral-textural information and feature selection using support vector machine method Type de document : Article/Communication Auteurs : Vijendra Singh Bramhe, Auteur ; Sanjay Kumar Ghosh, Auteur ; Pradeep Kumar Garg, Auteur Année de publication : 2020 Article en page(s) : pp 1067 - 1087 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse spectrale
[Termes descripteurs IGN] analyse texturale
[Termes descripteurs IGN] bati
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] matrice de co-occurrence
[Termes descripteurs IGN] niveau de gris (image)
[Termes descripteurs IGN] plus proche voisin (algorithme)
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] texture d'imageRésumé : (auteur) Information of built-up area is essential for various applications, such as sustainable development or urban planning. Built-up area extraction using optical data is challenging due to spectral confusion between built-up and other classes (bare land or river sand, etc.). Here an automated approach has been proposed to generate built-up maps using spectral-textural features and feature selection techniques. Eight Grey-Level Co-Occurrence Matrix based texture features are extracted using Landsat-8 Operational Land Imager bands and combined with multispectral data. The most informative features are selected from combined spectral-textural dataset using feature selection techniques. Further, Support Vector Machine (SVM) classifiers are trained on labelled samples using optimal features and results are compared with Back Propagation-Neural Network (BP-NN) and k-Nearest Neighbour (k-NN). The results show that inclusion of textural features and applying feature selection methods increases the highest overall accuracy of Linear-SVM, RBF-SVM, BP-NN, and k-NN by 9.20%, 9.09%, 8.42%, and 7.39%, respectively. Numéro de notice : A2020-425 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1566406 date de publication en ligne : 18/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1566406 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95489
in Geocarto international > vol 35 n° 10 [01/08/2020] . - pp 1067 - 1087[article]A water identification method basing on grayscale Landsat 8 OLI images / Zhitian Deng in Geocarto international, vol 35 n° 7 ([15/05/2020])
![]()
[article]
Titre : A water identification method basing on grayscale Landsat 8 OLI images Type de document : Article/Communication Auteurs : Zhitian Deng, Auteur ; Yonghua Sun, Auteur ; Ke Zhang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 700 - 710 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] correction atmosphérique
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] eau de surface
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] Kappa de Cohen
[Termes descripteurs IGN] niveau de gris (image)
[Termes descripteurs IGN] Normalized Difference Water Index
[Termes descripteurs IGN] ressources en eauRésumé : (auteur) Accurate identification of water boundaries is of great significance to water resources surveys. Most water indexes have been designed for different districts and cannot be universally utilized in different regions and, in addition, they rely on atmospheric correction. A new water index, None-Radiation-Calibration Water Index (NRCWI), was constructed by Landsat OLI Band 3 (Green), Band 5 (NIR), and Band 6 (SWIR1), and was compared to the previous method, Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), Automated Water Extraction Index (AWEI). We evaluated the accuracy of four water index methods for classifying water in 30-m resolution Landsat 8 OLI imagery from the Bohai Sea Rim in China, which takes in a broad assortment of features including sea and coastline, lakes, rivers, man-made water features, and mountains (shadow water). The following outcomes were obtained: 1. The overall accuracy of NRCWI was 95.23%, which is higher than NDWI, MNDWI, AWEI; 2. The leakage error of NRCWI was 5.48%, the misclassification error was 6.15%, and it implies that the error of NRCWI was effected decrease; 3. NRCWI had the highest kappa coefficient in lakes, rivers, man-made waters, mountains, and other ground features, which means that the method can reach a high accuracy in case 2 water which is principally situated in the near shore, estuary and so on; 4. In the applicability study, the kappa values of NRCWI were 89.99% (OLI), 87.36% (ETM+), 87.33% (TM), and 81.20% (Sentinel-2 MSI). Overall, the NRCWI method performed the best, with the highest accuracy and the lowest leakage error, which may be useful in OLI, ETM+, and TM imagery. Numéro de notice : A2020-272 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1552324 date de publication en ligne : 14/06/2019 En ligne : https://doi.org/10.1080/10106049.2018.1552324 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95056
in Geocarto international > vol 35 n° 7 [15/05/2020] . - pp 700 - 710[article]A point cloud feature regularization method by fusing judge criterion of field force / Xijiang Chen in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
![]()
[article]
Titre : A point cloud feature regularization method by fusing judge criterion of field force Type de document : Article/Communication Auteurs : Xijiang Chen, Auteur ; Qing Liu, Auteur ; Kegen Yu, Auteur Année de publication : 2020 Article en page(s) : pp 2994 - 3006 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] analyse vectorielle
[Termes descripteurs IGN] arbre BSP
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] matrice de covariance
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] modélisation du bâti
[Termes descripteurs IGN] niveau de gris (image)
[Termes descripteurs IGN] plus proche voisin (algorithme)
[Termes descripteurs IGN] reconstruction d'objet
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] spline cubique
[Termes descripteurs IGN] traitement d'image
[Termes descripteurs IGN] transformation de Hough
[Termes descripteurs IGN] Wuhan (Chine)Résumé : (auteur) Point cloud boundary is an important part of the surface model. The traditional feature extraction method has slow speed and low efficiency and only achieves the boundary feature points. Hence, the point cloud feature regularization is proposed to obtain the boundary lines based on the fast extraction of feature points in this article. First, an improved $k$ - $d$ tree method is used to search the $k$ neighbors of sampling point. Then, the sampling point and its $k$ neighbors are used as the reference points set to fit a microcut plane and project to the plane. The local coordinate system is established on the microcut plane to convert 3-D into 2-D. The boundary feature points are identified by judging criterion of field force and then are sorted and connected according to the vector deflected angle and distance. Finally, the boundary lines are smoothed by the improved cubic B-spline fitting method. Experiments show that the proposed method can extract the boundary feature points quickly and efficiently, and the mean error of boundary lines is 0.0674 mm and the standard deviation is 0.0346 mm, which has high precision. This proposed method was also successfully applied to feature extraction and boundary fitting of Xinyi teaching building of the Wuhan University of Technology. Numéro de notice : A2020-230 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2946326 date de publication en ligne : 16/12/2020 En ligne : https://doi.org/10.1109/TGRS.2019.2946326 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94968
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 5 (May 2020) . - pp 2994 - 3006[article]Extracting impervious surfaces from full polarimetric SAR images in different urban areas / Sara Attarchi in International Journal of Remote Sensing IJRS, vol 41 n°12 (20 - 30 March 2020)
![]()
[article]
Titre : Extracting impervious surfaces from full polarimetric SAR images in different urban areas Type de document : Article/Communication Auteurs : Sara Attarchi, Auteur Année de publication : 2020 Article en page(s) : pp 4644 - 4663 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] bande L
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] extraction de données
[Termes descripteurs IGN] image ALOS-PALSAR
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] matrice de co-occurrence
[Termes descripteurs IGN] niveau de gris (image)
[Termes descripteurs IGN] polarimétrie radar
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] radar à antenne synthétique
[Termes descripteurs IGN] surface imperméable
[Termes descripteurs IGN] surveillance de l'urbanisation
[Termes descripteurs IGN] texture d'image
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) Accurate mapping of impervious surface in urban areas is of great demand in environmental and socio-economic studies since impervious surface growth is recognized as an indicator of urbanization. To demonstrate the potential of full polarimetric Synthetic Aperture Radar (SAR) in impervious surface detection in different urban areas, this study focused on the exploitation of only SAR data. Three cities with different levels of urbanization – Tehran, Kordkuy, and Arak – have been selected to reduce the effect of input data on achieved results. Advanced Land Observing Satellite/Phased Array L-band Synthetic Aperture Radar (ALOS/PALSAR) images have been classified by support vector machine (SVM) with the help of training data from high-resolution satellite images. Quantitative assessment of classification accuracy revealed that Kordkuy, a not fully developed city (i.e. 84.2%) has the lowest accuracy and Arak, a medium urbanized city, has the highest accuracy (i.e. 90.0%). To further explore the efficiency of full polarimetric SAR, grey level co-occurrence matrix (GLCM) texture of polarized bands has been extracted and put into the classification procedure. The texture information of SAR data provided positive contribution to the impervious surface estimation in three study cases. The improvement is especially noted in dark impervious surface class. All three study areas show an increase of about 6–8% in classification accuracy. The results prove that single use of full polarimetric SAR images holds high potential in identifying impervious surfaces in urban areas. The findings are of great importance in frequent urban impervious surface mapping and monitoring especially in cloud-prone area, where the use of optical data as well as the fusion of optic and SAR data are limited. Numéro de notice : A2020-451 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431161.2020.1723178 date de publication en ligne : 24/02/2020 En ligne : https://doi.org/10.1080/01431161.2020.1723178 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95539
in International Journal of Remote Sensing IJRS > vol 41 n°12 (20 - 30 March 2020) . - pp 4644 - 4663[article]Robust multisource remote sensing image registration method based on scene shape similarity / Ming Hao in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 10 (October 2019)
![]()
[article]
Titre : Robust multisource remote sensing image registration method based on scene shape similarity Type de document : Article/Communication Auteurs : Ming Hao, Auteur ; Jian Jin, Auteur ; Mengchao Zhou, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 725 - 736 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] appariement de modèles
[Termes descripteurs IGN] coefficient de corrélation
[Termes descripteurs IGN] figuré du terrain
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] niveau de gris (image)
[Termes descripteurs IGN] point de liaison (imagerie)
[Termes descripteurs IGN] superposition d'images
[Termes descripteurs IGN] temps de pose
[Termes descripteurs IGN] transformation linéaireRésumé : (Auteur) Image registration is an indispensable component of remote sensing applications, such as disaster monitoring, change detection, and classification. Grayscale differences and geometric distortions often occur among multisource images due to their different imaging mechanisms, thus making it difficult to acquire feature points and match corresponding points. This article proposes a scene shape similarity feature (SSSF) descriptor based on scene shape features and shape context algorithms. A new similarity measure called SSSFncc is then defined by computing the normalized correlation coefficient of the SSSF descriptors between multisource remote sensing images. Furthermore, the tie points between the reference and the sensed image are extracted via a template matching strategy. A global consistency check method is then used to remove the mismatched tie points. Finally, a piecewise linear transform model is selected to rectify the remote sensing image. The proposed SSSFncc aims to extract the scene shape similarity between multisource images. The accuracy of the proposed SSSFncc is evaluated using five pairs of experimental images from optical, synthetic aperture radar, and map data. Registration results demonstrate that the SSSFncc similarity measure is robust enough for complex nonlinear grayscale differences among multisource remote sensing images. The proposed method achieves more reliable registration outcomes compared with other popular methods. Numéro de notice : A2019-521 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.10.725 date de publication en ligne : 01/10/2019 En ligne : https://doi.org/10.14358/PERS.85.10.725 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93989
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 10 (October 2019) . - pp 725 - 736[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019101 SL Revue Centre de documentation Revues en salle Disponible Individual tree crown segmentation in tropical peat swamp forest using airborne hyperspectral data / Sitinor Atikah Nordin in Geocarto international, vol 34 n° 11 ([15/08/2019])
PermalinkUne nouvelle méthode de vectorisation du cadastre ancien / Antony Chalais in Géomatique expert, n° 129 (août - septembre 2019)
PermalinkSmart cartographic background symbolization for map mashups in geoportals : A proof of concept by example of landuse representation / Nadia H. Panchaud in Cartographic journal (the), Vol 56 n° 1 (February 2019)
PermalinkA greyscale voxel model for airborne lidar data applied to building detection / Liying Wang in Photogrammetric record, vol 33 n° 164 (December 2018)
PermalinkDeep supervised and contractive neural network for SAR image classification / Jie Geng in IEEE Transactions on geoscience and remote sensing, vol 55 n° 4 (April 2017)
PermalinkVector attribute profiles for hyperspectral image classification / Erchan Aptoula in IEEE Transactions on geoscience and remote sensing, vol 54 n° 6 (June 2016)
PermalinkDécision cumulative pour la vision dynamique des systèmes / Samia Bouchafa in Revue Française de Photogrammétrie et de Télédétection, n° 202 (Avril 2013)
PermalinkTopological gradient connection analysis for feature detection / Chao-Yuan Lo in Photogrammetric record, vol 28 n° 141 (March - May 2013)
PermalinkEstimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions / M. Cutler in ISPRS Journal of photogrammetry and remote sensing, vol 70 (June 2012)
PermalinkUne approche parallèle d'évaluation des paramètres de texture pour l'analyse d'images de grande taille / N. Talla Tankam in Revue Française de Photogrammétrie et de Télédétection, n° 195 (Novembre 2011)
Permalink