Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > photogrammétrie > photogrammétrie numérique > orthophotoplan numérique
orthophotoplan numériqueSynonyme(s)orthomosaïque mosaïque d'orthoimagesVoir aussi |
Documents disponibles dans cette catégorie (103)



Etendre la recherche sur niveau(x) vers le bas
True orthophoto generation based on unmanned aerial vehicle images using reconstructed edge points / Mojdeh Ebrahimikia in Photogrammetric record, vol 37 n° 178 (June 2022)
![]()
[article]
Titre : True orthophoto generation based on unmanned aerial vehicle images using reconstructed edge points Type de document : Article/Communication Auteurs : Mojdeh Ebrahimikia, Auteur ; Ali Hosseininaveh, Auteur Année de publication : 2022 Article en page(s) : pp 161 - 184 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] détection de contours
[Termes IGN] détection du bâti
[Termes IGN] distorsion d'image
[Termes IGN] graphe
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface
[Termes IGN] orthophotographie
[Termes IGN] orthophotoplan numérique
[Termes IGN] photogrammétrie aérienne
[Termes IGN] pixel de contour
[Termes IGN] structure-from-motion
[Termes IGN] zone urbaineRésumé : (auteur) After considering state-of-the-art algorithms, this paper presents a novel method for generating true orthophotos from unmanned aerial vehicle (UAV) images of urban areas. The procedure consists of four steps: 2D edge detection in building regions, 3D edge graph generation, digital surface model (DSM) modification and, finally, true orthophoto and orthomosaic generation. The main contribution of this paper is concerned with the first two steps, in which deep-learning approaches are used to identify the structural edges of the buildings and the estimated 3D edge points are added to the point cloud for DSM modification. Running the proposed method as well as four state-of-the-art methods on two different datasets demonstrates that the proposed method outperforms the existing orthophoto improvement methods by up to 50% in the first dataset and by 70% in the second dataset by reducing true orthophoto distortion in the structured edges of the buildings. Numéro de notice : A2022-517 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12409 Date de publication en ligne : 05/04/2022 En ligne : https://doi.org/10.1111/phor.12409 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101065
in Photogrammetric record > vol 37 n° 178 (June 2022) . - pp 161 - 184[article]Unveiling the complex canopy spatial structure of a Mediterranean old-growth beech (Fagus sylvatica L.) forest from UAV observations / Francesco Solano in Ecological indicators, vol 138 (May 2022)
![]()
[article]
Titre : Unveiling the complex canopy spatial structure of a Mediterranean old-growth beech (Fagus sylvatica L.) forest from UAV observations Type de document : Article/Communication Auteurs : Francesco Solano, Auteur ; Giuseppe Modica, Auteur ; Salvatore Praticò, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 108807 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Calabre
[Termes IGN] écosystème forestier
[Termes IGN] Fagus sylvatica
[Termes IGN] forêt ancienne
[Termes IGN] forêt méditerranéenne
[Termes IGN] forêt primaire
[Termes IGN] image à très haute résolution
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] orthophotoplan numérique
[Termes IGN] photogrammétrie aérienne
[Termes IGN] structure spatiale
[Termes IGN] structure-from-motion
[Termes IGN] surveillance forestièreRésumé : (auteur) In front of climate change scenarios and global loss of biodiversity, it is essential to monitor the structure of old-growth forests to study ecosystem status and dynamics to inform future conservation and restoration programmes. We propose an Unmanned Aerial Vehicle (UAV)-based framework to monitor fine-grained forest top canopy structure in a primary old-growth beech (Fagus sylvatica L.) forest in Pollino National Park, Italy, which belongs to the UNESCO World Heritage (UNESCO WH) serial site “Ancient and Primeval beech forests of the Carpathians and other regions of Europe”. Canopy profile, gap properties and their spatial distribution patterns were analysed using the canopy height model (CHM) derived from UAV surveys. Very high-resolution orthomosaic images coupled with direct field measurement data were used to assess gap detection accuracy and CHM validation. Forest canopy properties along with the vertical layering of the canopy were further explored using second-order statistics. The reconstructed canopy profile revealed a bimodal top height frequency distribution. The upper canopy layer (h > 14 m) was the most represented canopy height, with the remaining 50% split between the medium and lowest layer; 551 gaps were identified within 11.5 ha. Gap size varied between 2 m2 and 353 m2, and 19 m2was the mean gap size; the gap size-frequency relationship reflected a power-law probability distribution. About 97 % of the gaps were Numéro de notice : A2022-369 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.ecolind.2022.108807 Date de publication en ligne : 01/04/2022 En ligne : https://doi.org/10.1016/j.ecolind.2022.108807 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100598
in Ecological indicators > vol 138 (May 2022) . - n° 108807[article]Automated inventory of broadleaf tree plantations with UAS imagery / Aishwarya Chandrasekaran in Remote sensing, vol 14 n° 8 (April-2 2022)
![]()
[article]
Titre : Automated inventory of broadleaf tree plantations with UAS imagery Type de document : Article/Communication Auteurs : Aishwarya Chandrasekaran, Auteur ; Guofan Shao, Auteur ; Songlin Fei, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1931 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] feuillu
[Termes IGN] hauteur à la base du houppier
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] Indiana (Etats-Unis)
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] orthophotoplan numérique
[Termes IGN] plantation forestière
[Termes IGN] R (langage)
[Termes IGN] semis de points
[Termes IGN] structure-from-motionRésumé : (auteur) With the increased availability of unmanned aerial systems (UAS) imagery, digitalized forest inventory has gained prominence in recent years. This paper presents a methodology for automated measurement of tree height and crown area in two broadleaf tree plantations of different species and ages using two different UAS platforms. Using structure from motion (SfM), we generated canopy height models (CHMs) for each broadleaf plantation in Indiana, USA. From the CHMs, we calculated individual tree parameters automatically through an open-source web tool developed using the Shiny R package and assessed the accuracy against field measurements. Our analysis shows higher tree measurement accuracy with the datasets derived from multi-rotor platform (M600) than with the fixed wing platform (Bramor). The results show that our automated method could identify individual trees (F-score > 90%) and tree biometrics (root mean square error Numéro de notice : A2022-351 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14081931 Date de publication en ligne : 16/04/2022 En ligne : https://doi.org/10.3390/rs14081931 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100539
in Remote sensing > vol 14 n° 8 (April-2 2022) . - n° 1931[article]Detection of windthrown tree stems on UAV-orthomosaics using U-Net convolutional networks / Stefan Reder in Remote sensing, vol 14 n° 1 (January-1 2022)
![]()
[article]
Titre : Detection of windthrown tree stems on UAV-orthomosaics using U-Net convolutional networks Type de document : Article/Communication Auteurs : Stefan Reder, Auteur ; J.P. Mund, Auteur ; Nicole Albert, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 75 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] branche (arbre)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] dommage forestier causé par facteurs naturels
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] image captée par drone
[Termes IGN] orthophotoplan numérique
[Termes IGN] segmentation sémantique
[Termes IGN] tempête
[Termes IGN] troncRésumé : (auteur) The increasing number of severe storm events is threatening European forests. Besides the primary damages directly caused by storms, there are secondary damages such as bark beetle outbreaks and tertiary damages due to negative effects on the market. These subsequent damages can be minimized if a detailed overview of the affected area and the amount of damaged wood can be obtained quickly and included in the planning of clearance measures. The present work utilizes UAV-orthophotos and an adaptation of the U-Net architecture for the semantic segmentation and localization of windthrown stems. The network was pre-trained with generic datasets, randomly combining stems and background samples in a copy–paste augmentation, and afterwards trained with a specific dataset of a particular windthrow. The models pre-trained with generic datasets containing 10, 50 and 100 augmentations per annotated windthrown stems achieved F1-scores of 73.9% (S1Mod10), 74.3% (S1Mod50) and 75.6% (S1Mod100), outperforming the baseline model (F1-score 72.6%), which was not pre-trained. These results emphasize the applicability of the method to correctly identify windthrown trees and suggest the collection of training samples from other tree species and windthrow areas to improve the ability to generalize. Further enhancements of the network architecture are considered to improve the classification performance and to minimize the calculative costs. Numéro de notice : A2022-082 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14010075 En ligne : https://doi.org/10.3390/rs14010075 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99476
in Remote sensing > vol 14 n° 1 (January-1 2022) . - n° 75[article]Automatic building detection with polygonizing and attribute extraction from high-resolution images / Samitha Daranagama in ISPRS International journal of geo-information, vol 10 n° 9 (September 2021)
![]()
[article]
Titre : Automatic building detection with polygonizing and attribute extraction from high-resolution images Type de document : Article/Communication Auteurs : Samitha Daranagama, Auteur ; Apichon Witayangkurn, Auteur Année de publication : 2021 Article en page(s) : n° 606 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de Douglas-Peucker
[Termes IGN] apprentissage profond
[Termes IGN] détection du bâti
[Termes IGN] image à haute résolution
[Termes IGN] image captée par drone
[Termes IGN] lissage de courbe
[Termes IGN] orthophotoplan numérique
[Termes IGN] polygonation
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Buildings can be introduced as a fundamental element for forming a city. Therefore, up-to-date building maps have become vital for many applications, including urban mapping and urban expansion analysis. With the development of deep learning, segmenting building footprints from high-resolution remote sensing imagery has become a subject of intense study. Here, a modified version of the U-Net architecture with a combination of pre- and post-processing techniques was developed to extract building footprints from high-resolution aerial imagery and unmanned aerial vehicle (UAV) imagery. Data pre-processing with the logarithmic correction image enhancing algorithm showed the most significant improvement in the building detection accuracy for aerial images; meanwhile, the CLAHE algorithm improved the most concerning UAV images. This study developed a post-processing technique using polygonizing and polygon smoothing called the Douglas–Peucker algorithm, which made the building output directly ready to use for different applications. The attribute information, land use data, and population count data were applied using two open datasets. In addition, the building area and perimeter of each building were calculated as geometric attributes. Numéro de notice : A2021-684 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/ijgi10090606 Date de publication en ligne : 14/09/2021 En ligne : https://doi.org/10.3390/ijgi10090606 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98410
in ISPRS International journal of geo-information > vol 10 n° 9 (September 2021) . - n° 606[article]Apport des méthodes : imagerie drone, LiDAR et imagerie hyperspectrale pour l’étude du littoral vendéen / Mathis Baudis (2021)
PermalinkQuality assessment of photogrammetric methods - A workflow for reproducible UAS orthomosaics / Marvin Ludwig in Remote sensing, vol 12 n° 22 (December-1 2020)
PermalinkModeling strawberry biomass and leaf area using object-based analysis of high-resolution images / Zhen Guan in ISPRS Journal of photogrammetry and remote sensing, vol 163 (May 2020)
PermalinkStatistical assessment of cartographic product from photogrammetry and fixed-wing UAV acquisition / Ademir Marques Junior in European journal of remote sensing, vol 53 n° 1 (2020)
PermalinkSegmenting mangrove ecosystems drone images using SLIC superpixels / Edward Zimudzi in Geocarto international, vol 34 n° 14 ([30/10/2019])
PermalinkUnmanned aerial vehicles (UAVs) for monitoring macroalgal biodiversity: comparison of RGB and multispectral imaging sensors for biodiversity assessments / Leigh Tait in Remote sensing, vol 11 n° 19 (October-1 2019)
PermalinkHigh-resolution large-area digital orthophoto map generation using LROC NAC images / Kaichang Di in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 7 (July 2019)
PermalinkPermalinkAn evaluation of reflectance calibration methods for UAV spectral imagery / Jarrod Edwards in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 3 (March 2019)
PermalinkSeamline network generation based on foreground segmentation for orthoimage mosaicking / Li Li in ISPRS Journal of photogrammetry and remote sensing, vol 148 (February 2019)
Permalink