Descripteur
Termes IGN > informatique > intelligence artificielle > apprentissage automatique > apprentissage profond > réseau neuronal artificiel > Perceptron multicouche
Perceptron multicoucheSynonyme(s)MLP |
Documents disponibles dans cette catégorie (40)



Etendre la recherche sur niveau(x) vers le bas
Beyond single receptive field: A receptive field fusion-and-stratification network for airborne laser scanning point cloud classification / Yongqiang Mao in ISPRS Journal of photogrammetry and remote sensing, vol 188 (June 2022)
![]()
[article]
Titre : Beyond single receptive field: A receptive field fusion-and-stratification network for airborne laser scanning point cloud classification Type de document : Article/Communication Auteurs : Yongqiang Mao, Auteur ; Kaiqiang chen, Auteur ; Wenhui Diao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 45 - 61 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage automatique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données laser
[Termes IGN] données localisées 3D
[Termes IGN] Perceptron multicouche
[Termes IGN] représentation parcimonieuse
[Termes IGN] réseau neuronal de graphes
[Termes IGN] semis de points
[Termes IGN] stratification de données
[Termes IGN] voxelRésumé : (Auteur) The classification of airborne laser scanning (ALS) point clouds is a critical task of remote sensing and photogrammetry fields. Although recent deep learning-based methods have achieved satisfactory performance, they have ignored the unicity of the receptive field, which makes the ALS point cloud classification remain challenging for the distinguishment of the areas with complex structures and extreme scale variations. In this article, for the objective of configuring multi-receptive field features, we propose a novel receptive field fusion-and-stratification network (RFFS-Net). With a novel dilated graph convolution (DGConv) and its extension annular dilated convolution (ADConv) as basic building blocks, the receptive field fusion process is implemented with the dilated and annular graph fusion (DAGFusion) module, which obtains multi-receptive field feature representation through capturing dilated and annular graphs with various receptive regions. The stratification of the receptive fields with point sets of different resolutions as the calculation bases is performed with Multi-level Decoders nested in RFFS-Net and driven by the multi-level receptive field aggregation loss (MRFALoss) to drive the network to learn in the direction of the supervision labels with different resolutions. With receptive field fusion-and-stratification, RFFS-Net is more adaptable to the classification of regions with complex structures and extreme scale variations in large-scale ALS point clouds. Evaluated on the ISPRS Vaihingen 3D dataset, our RFFS-Net significantly outperforms the baseline (i.e. PointConv) approach by 5.3% on mF1 and 5.4% on mIoU, accomplishing an overall accuracy of 82.1%, an mF1 of 71.6%, and an mIoU of 58.2%. The experiments show that our RFFS-Net achieves a new state-of-the-art classification performance on powerline, car, and fence classes. Furthermore, experiments on the LASDU dataset and the 2019 IEEE-GRSS Data Fusion Contest dataset show that RFFS-Net achieves a new state-of-the-art classification performance. The code is available at github.com/WingkeungM/RFFS-Net. Numéro de notice : A2022-273 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.03.019 Date de publication en ligne : 07/04/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.03.019 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100532
in ISPRS Journal of photogrammetry and remote sensing > vol 188 (June 2022) . - pp 45 - 61[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022061 SL Revue Centre de documentation Revues en salle Disponible 081-2022063 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2022062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt DiffusionNet: discretization agnostic learning on surfaces / Nicholas Sharp in ACM Transactions on Graphics, TOG, Vol 41 n° 3 (June 2022)
![]()
[article]
Titre : DiffusionNet: discretization agnostic learning on surfaces Type de document : Article/Communication Auteurs : Nicholas Sharp, Auteur ; Souhaib Attaiki, Auteur ; K. Crane, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1 - 16 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] apprentissage profond
[Termes IGN] discrétisation
[Termes IGN] maillage
[Termes IGN] Perceptron multicouche
[Termes IGN] Triangular Regular Network
[Termes IGN] voisinage (relation topologique)Résumé : (auteur) We introduce a new general-purpose approach to deep learning on three-dimensional surfaces based on the insight that a simple diffusion layer is highly effective for spatial communication. The resulting networks are automatically robust to changes in resolution and sampling of a surface—a basic property that is crucial for practical applications. Our networks can be discretized on various geometric representations, such as triangle meshes or point clouds, and can even be trained on one representation and then applied to another. We optimize the spatial support of diffusion as a continuous network parameter ranging from purely local to totally global, removing the burden of manually choosing neighborhood sizes. The only other ingredients in the method are a multi-layer perceptron applied independently at each point and spatial gradient features to support directional filters. The resulting networks are simple, robust, and efficient. Here, we focus primarily on triangle mesh surfaces and demonstrate state-of-the-art results for a variety of tasks, including surface classification, segmentation, and non-rigid correspondence. Numéro de notice : A2022-321 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1145/3507905 Date de publication en ligne : 07/03/2022 En ligne : https://doi.org/10.1145/3507905 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100369
in ACM Transactions on Graphics, TOG > Vol 41 n° 3 (June 2022) . - pp 1 - 16[article]Wood decay detection in Norway spruce forests based on airborne hyperspectral and ALS data / Michele Dalponte in Remote sensing, vol 14 n° 8 (April-2 2022)
![]()
[article]
Titre : Wood decay detection in Norway spruce forests based on airborne hyperspectral and ALS data Type de document : Article/Communication Auteurs : Michele Dalponte, Auteur ; Alvar J. I. Kallio, Auteur ; Hans Ole Ørka, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1892 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] bois sur pied
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] dépérissement
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données lidar
[Termes IGN] image hyperspectrale
[Termes IGN] image infrarouge
[Termes IGN] Norvège
[Termes IGN] Perceptron multicouche
[Termes IGN] Picea abies
[Termes IGN] régression linéaire
[Termes IGN] régression logistique
[Termes IGN] santé des forêts
[Termes IGN] semis de pointsRésumé : (auteur) Wood decay caused by pathogenic fungi in Norway spruce forests causes severe economic losses in the forestry sector, and currently no efficient methods exist to detect infected trees. The detection of wood decay could potentially lead to improvements in forest management and could help in reducing economic losses. In this study, airborne hyperspectral data were used to detect the presence of wood decay in the trees in two forest areas located in Etnedal (dataset I) and Gran (dataset II) municipalities, in southern Norway. The hyperspectral data used consisted of images acquired by two sensors operating in the VNIR and SWIR parts of the spectrum. Corresponding ground reference data were collected in Etnedal using a cut-to-length harvester while in Gran, field measurements were collected manually. Airborne laser scanning (ALS) data were used to detect the individual tree crowns (ITCs) in both sites. Different approaches to deal with pixels inside each ITC were considered: in particular, pixels were either aggregated to a unique value per ITC (i.e., mean, weighted mean, median, centermost pixel) or analyzed in an unaggregated way. Multiple classification methods were explored to predict rot presence: logistic regression, feed forward neural networks, and convolutional neural networks. The results showed that wood decay could be detected, even if with accuracy varying among the two datasets. The best results on the Etnedal dataset were obtained using a convolution neural network with the first five components of a principal component analysis as input (OA = 65.5%), while on the Gran dataset, the best result was obtained using LASSO with logistic regression and data aggregated using the weighted mean (OA = 61.4%). In general, the differences among aggregated and unaggregated data were small. Numéro de notice : A2022-352 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.3390/rs14081892 Date de publication en ligne : 14/04/2022 En ligne : https://doi.org/10.3390/rs14081892 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100541
in Remote sensing > vol 14 n° 8 (April-2 2022) . - n° 1892[article]Two hidden layer neural network-based rotation forest ensemble for hyperspectral image classification / Laxmi Narayana Eeti in Geocarto international, vol 36 n° 16 ([01/09/2021])
![]()
[article]
Titre : Two hidden layer neural network-based rotation forest ensemble for hyperspectral image classification Type de document : Article/Communication Auteurs : Laxmi Narayana Eeti, Auteur ; Krishna Mohan Buddhiraju, Auteur Année de publication : 2021 Article en page(s) : pp 1820 - 1837 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] arbre de décision
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] ensachage
[Termes IGN] image AVIRIS
[Termes IGN] image EO1-Hyperion
[Termes IGN] image hyperspectrale
[Termes IGN] image ROSIS
[Termes IGN] Perceptron multicouche
[Termes IGN] précision de la classification
[Termes IGN] réseau neuronal profond
[Termes IGN] Rotation Forest classificationRésumé : (auteur) Decision tree-based Rotation Forest could generate satisfactory but lower classification accuracy for a given training sample set and image data, owing to the inherent disadvantages in decision trees, namely myopic, replication and fragmentation problem. To improve performance of Rotation Forest technique, we propose to utilize two-hidden-layered-feedforward neural network as base classifier instead of decision tree. We examine the classification performance of proposed model under two situations, namely when free network parameters are maintained the same across all ensemble components and otherwise. The proposed model, where each component is initialized with different pair of initial weights and bias, performs better than decision tree-based Rotation Forest on three different Hyperspectral sensor datasets – AVIRIS, ROSIS and Hyperion. Improvements in classification accuracy are above 2% and up to 3% depending upon dataset. Also, the proposed model achieves improvement in accuracy over Random Forest in the range 4.2–8.8%. Numéro de notice : A2021-581 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1678680 Date de publication en ligne : 21/10/2019 En ligne : https://doi.org/10.1080/10106049.2019.1678680 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98193
in Geocarto international > vol 36 n° 16 [01/09/2021] . - pp 1820 - 1837[article]A multi-layer perceptron neural network to mitigate the interference of time synchronization attacks in stationary GPS receivers / N. Orouji in GPS solutions, vol 25 n° 3 (July 2021)
![]()
[article]
Titre : A multi-layer perceptron neural network to mitigate the interference of time synchronization attacks in stationary GPS receivers Type de document : Article/Communication Auteurs : N. Orouji, Auteur ; M. R. Mosavi, Auteur Année de publication : 2021 Article en page(s) : Article 84 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] décalage d'horloge
[Termes IGN] horloge du récepteur
[Termes IGN] méthode robuste
[Termes IGN] Perceptron multicouche
[Termes IGN] précision des données
[Termes IGN] récepteur GPS
[Termes IGN] station GPS
[Termes IGN] synchronisationRésumé : (Auteur) Accurate timing is one of the key features of the Global Positioning System (GPS), which is employed in many critical infrastructures. Any imprecise time measurement in GPS-based structures, such as smart power grids, economic activities, and communication towers, can lead to disastrous results. The vulnerability of the stationary GPS receivers to the time synchronization attacks (TSAs) jeopardizes the GPS timing precision and trust level. In the past few years, studies suggested the adoption of estimators to follow the authentic trend of the clock offset information under attack conditions. However, the estimators would lose track of the authentic signal without proper knowledge of the signal characteristics. Therefore, a multi-layer perceptron neural network (MLP NN) is proposed to follow the trend of the data. The main difference between the proposed method and typical estimators is the reliance of the network on the training information consisting of signal features. The proposed MLP NN performance has been evaluated through two real-world datasets and two well-known types of TSA. The root mean square error results exhibit an improvement of at least six times compared to other conventional and state-of-art methods. Numéro de notice : A2021-331 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-021-01124-z Date de publication en ligne : 05/04/2021 En ligne : https://doi.org/10.1007/s10291-021-01124-z Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97501
in GPS solutions > vol 25 n° 3 (July 2021) . - Article 84[article]A framework for classification of volunteered geographic data based on user’s need / Nazila Mohammadi in Geocarto international, vol 36 n° 11 ([15/06/2021])
PermalinkApplication of a multi-layer artificial neural network in a 3-D global electron density model using the long-term observations of COSMIC, Fengyun-3C, and Digisonde / Li Wang in Space weather, vol 19 n° 3 (March 2021)
PermalinkEvaluation of a neural network with uncertainty for detection of ice and water in SAR imagery / Nazanin Asadi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkPanoptic segmentation of satellite image time series with convolutional temporal attention networks / Vivien Sainte Fare Garnot (2021)
PermalinkSupplementary material for: Panoptic segmentation of satellite image time series with convolutional temporal attention networks / Vivien Sainte Fare Garnot (2021)
PermalinkClassification of hyperspectral and LiDAR data using coupled CNNs / Renlong Hang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
PermalinkComparison of spatial modelling approaches to simulate urban growth: a case study on Udaipur city, India / Biswajit Mondal in Geocarto international, vol 35 n° 4 ([15/03/2020])
PermalinkSpatially constrained regionalization with multilayer perceptron / Michael Govorov in Transactions in GIS, Vol 23 n° 5 (October 2019)
PermalinkSoil roughness retrieval from TerraSar-X data using neural network and fractal method / Mohammad Maleki in Advances in space research, vol 64 n°5 (1 September 2019)
PermalinkUsing LiDAR-modified topographic wetness index, terrain attributes with leaf area index to improve a single-tree growth model in south-eastern Finland / Cheikh Mohamedou in Forestry, an international journal of forest research, vol 92 n° 3 (July 2019)
Permalink