Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > photogrammétrie > photogrammétrie aérienne
photogrammétrie aérienne |
Documents disponibles dans cette catégorie (134)



Etendre la recherche sur niveau(x) vers le bas
Unveiling the complex canopy spatial structure of a Mediterranean old-growth beech (Fagus sylvatica L.) forest from UAV observations / Francesco Solano in Ecological indicators, vol 138 (May 2022)
![]()
[article]
Titre : Unveiling the complex canopy spatial structure of a Mediterranean old-growth beech (Fagus sylvatica L.) forest from UAV observations Type de document : Article/Communication Auteurs : Francesco Solano, Auteur ; Giuseppe Modica, Auteur ; Salvatore Praticò, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 108807 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Calabre
[Termes IGN] écosystème forestier
[Termes IGN] Fagus sylvatica
[Termes IGN] forêt ancienne
[Termes IGN] forêt méditerranéenne
[Termes IGN] forêt primaire
[Termes IGN] image à très haute résolution
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] orthophotoplan numérique
[Termes IGN] photogrammétrie aérienne
[Termes IGN] structure spatiale
[Termes IGN] structure-from-motion
[Termes IGN] surveillance forestièreRésumé : (auteur) In front of climate change scenarios and global loss of biodiversity, it is essential to monitor the structure of old-growth forests to study ecosystem status and dynamics to inform future conservation and restoration programmes. We propose an Unmanned Aerial Vehicle (UAV)-based framework to monitor fine-grained forest top canopy structure in a primary old-growth beech (Fagus sylvatica L.) forest in Pollino National Park, Italy, which belongs to the UNESCO World Heritage (UNESCO WH) serial site “Ancient and Primeval beech forests of the Carpathians and other regions of Europe”. Canopy profile, gap properties and their spatial distribution patterns were analysed using the canopy height model (CHM) derived from UAV surveys. Very high-resolution orthomosaic images coupled with direct field measurement data were used to assess gap detection accuracy and CHM validation. Forest canopy properties along with the vertical layering of the canopy were further explored using second-order statistics. The reconstructed canopy profile revealed a bimodal top height frequency distribution. The upper canopy layer (h > 14 m) was the most represented canopy height, with the remaining 50% split between the medium and lowest layer; 551 gaps were identified within 11.5 ha. Gap size varied between 2 m2 and 353 m2, and 19 m2was the mean gap size; the gap size-frequency relationship reflected a power-law probability distribution. About 97 % of the gaps were Numéro de notice : A2022-369 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.ecolind.2022.108807 Date de publication en ligne : 01/04/2022 En ligne : https://doi.org/10.1016/j.ecolind.2022.108807 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100598
in Ecological indicators > vol 138 (May 2022) . - n° 108807[article]Direct photogrammetry with multispectral imagery for UAV-based snow depth estimation / Kathrin Maier in ISPRS Journal of photogrammetry and remote sensing, vol 186 (April 2022)
![]()
[article]
Titre : Direct photogrammetry with multispectral imagery for UAV-based snow depth estimation Type de document : Article/Communication Auteurs : Kathrin Maier, Auteur ; Andrea Nascetti, Auteur ; Ward van Pelt, Auteur ; Gunhild Rosqvist, Auteur Année de publication : 2022 Article en page(s) : pp 1 - 18 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse en composantes principales
[Termes IGN] bande infrarouge
[Termes IGN] épaisseur
[Termes IGN] erreur moyenne quadratique
[Termes IGN] géoréférencement direct
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] manteau neigeux
[Termes IGN] modèle numérique de surface
[Termes IGN] photogrammétrie aérienne
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] qualité du modèle
[Termes IGN] reconstruction 3D
[Termes IGN] structure-from-motion
[Termes IGN] SuèdeRésumé : (Auteur) More accurate snow quality predictions are needed to economically and socially support communities in a changing Arctic environment. This contrasts with the current availability of affordable and efficient snow monitoring methods. In this study, a novel approach is presented to determine spatial snow depth distribution in challenging alpine terrain that was tested during a field campaign performed in the Tarfala valley, Kebnekaise mountains, northern Sweden, in April 2019. The combination of a multispectral camera and an Unmanned Aerial Vehicle (UAV) was used to derive three-dimensional (3D) snow surface models via Structure from Motion (SfM) with direct georeferencing. The main advantage over conventional photogrammetric surveys is the utilization of accurate Real-Time Kinematic (RTK) positioning which enables direct georeferencing of the images, and therefore eliminates the need for ground control points. The proposed method is capable of producing high-resolution 3D snow-covered surface models (7 cm/pixel) of alpine areas up to eight hectares in a fast, reliable and affordable way. The test sites’ average snow depth was 160 cm with an average standard deviation of 78 cm. The overall Root-Mean-Square Errors (RMSE) of the snow depth range from 11.52 cm for data acquired in ideal surveying conditions to 41.03 cm in aggravated light and wind conditions. Results of this study suggest that the red components in the electromagnetic spectrum, i.e., the red, red edge, and near-infrared (NIR) band, contain the majority of information used in photogrammetric processing. The experiments highlighted a significant influence of the multi-spectral imagery on the quality of the final snow depth estimation as well as a strong potential to reduce processing times and computational resources by limiting the dimensionality of the imagery through the application of a Principal Component Analysis (PCA) before the photogrammetric 3D reconstruction. The proposed method is part of closing the scale gap between discrete point measurements and regional-scale remote sensing and complements large-scale remote sensing data and snow model output with an adequate validation source. Numéro de notice : A2022-066 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.01.020 Date de publication en ligne : 09/02/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.01.020 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99783
in ISPRS Journal of photogrammetry and remote sensing > vol 186 (April 2022) . - pp 1 - 18[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022041 SL Revue Centre de documentation Revues en salle Disponible 081-2022043 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2022042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Classification of mediterranean shrub species from UAV point clouds / Juan Pedro Carbonell-Rivera in Remote sensing, vol 14 n° 1 (January-1 2022)
![]()
[article]
Titre : Classification of mediterranean shrub species from UAV point clouds Type de document : Article/Communication Auteurs : Juan Pedro Carbonell-Rivera, Auteur ; Jesus Torralba, Auteur ; Javier Estornell, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 199 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage automatique
[Termes IGN] arbuste
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] Espagne
[Termes IGN] Extreme Gradient Machine
[Termes IGN] forêt méditerranéenne
[Termes IGN] image captée par drone
[Termes IGN] incendie de forêt
[Termes IGN] indice de végétation
[Termes IGN] modèle de simulation
[Termes IGN] modèle numérique de terrain
[Termes IGN] parc naturel
[Termes IGN] photogrammétrie aérienne
[Termes IGN] semis de pointsRésumé : (auteur) Modelling fire behaviour in forest fires is based on meteorological, topographical, and vegetation data, including species’ type. To accurately parameterise these models, an inventory of the area of analysis with the maximum spatial and temporal resolution is required. This study investigated the use of UAV-based digital aerial photogrammetry (UAV-DAP) point clouds to classify tree and shrub species in Mediterranean forests, and this information is key for the correct generation of wildfire models. In July 2020, two test sites located in the Natural Park of Sierra Calderona (eastern Spain) were analysed, registering 1036 vegetation individuals as reference data, corresponding to 11 shrub and one tree species. Meanwhile, photogrammetric flights were carried out over the test sites, using a UAV DJI Inspire 2 equipped with a Micasense RedEdge multispectral camera. Geometrical, spectral, and neighbour-based features were obtained from the resulting point cloud generated. Using these features, points belonging to tree and shrub species were classified using several machine learning methods, i.e., Decision Trees, Extra Trees, Gradient Boosting, Random Forest, and MultiLayer Perceptron. The best results were obtained using Gradient Boosting, with a mean cross-validation accuracy of 81.7% and 91.5% for test sites 1 and 2, respectively. Once the best classifier was selected, classified points were clustered based on their geometry and tested with evaluation data, and overall accuracies of 81.9% and 96.4% were obtained for test sites 1 and 2, respectively. Results showed that the use of UAV-DAP allows the classification of Mediterranean tree and shrub species. This technique opens a wide range of possibilities, including the identification of species as a first step for further extraction of structure and fuel variables as input for wildfire behaviour models. Numéro de notice : A2022-057 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14010199 En ligne : https://doi.org/10.3390/rs14010199 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99462
in Remote sensing > vol 14 n° 1 (January-1 2022) . - n° 199[article]OBIA-based extraction of artificial terrace damages in the Loess plateau of China from UAV photogrammetry / Xuan Fang in ISPRS International journal of geo-information, vol 10 n° 12 (December 2021)
![]()
[article]
Titre : OBIA-based extraction of artificial terrace damages in the Loess plateau of China from UAV photogrammetry Type de document : Article/Communication Auteurs : Xuan Fang, Auteur ; Jincheng Li, Auteur ; Ying Zhu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 805 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse d'image orientée objet
[Termes IGN] Chine
[Termes IGN] classification barycentrique
[Termes IGN] dommage matériel
[Termes IGN] données de terrain
[Termes IGN] érosion
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface
[Termes IGN] pente
[Termes IGN] photogrammétrie aérienne
[Termes IGN] segmentation d'image
[Termes IGN] surface cultivée
[Termes IGN] terrasseRésumé : (auteur) Terraces, which are typical artificial landforms found around world, are of great importance for agricultural production and soil and water conservation. However, due to the lack of maintenance, terrace damages often occur and affect the local flow process, which will influence soil erosion. Automatic high-accuracy mapping of terrace damages is the basis of monitoring and related studies. Researchers have achieved artificial terrace damage mapping mainly via manual field investigation, but an automatic method is still lacking. In this study, given the success of high-resolution unmanned aerial vehicle (UAV) photogrammetry and object-based image analysis (OBIA) for image processing tasks, an integrated framework based on OBIA and UAV photogrammetry is proposed for terrace damage mapping. The Pujiawa terrace in the Loess Plateau of China was selected as the study area. Firstly, the segmentation process was optimised by considering the spectral features and the terrains and corresponding textures obtained from high-resolution images and digital surface models. The feature selection was implemented via correlation analysis, and the optimised segmentation parameter was achieved using the estimation of scale parameter algorithm. Then, a supervised k-nearest neighbourhood classifier was used to identify the terrace damages in the segmented objects, and additional geometric features at the object level were considered for classification. The comparison with the ground truth, as delineated by the image and field survey, showed that proposed classification can be adequately performed. The F-measures of extraction on three terrace damages were 92.07% (terrace sinkhole), 81.95% (ridge sinkhole), and 85.17% (collapse), and the Kappa coefficient was 85.34%. Finally, the potential application and spatial distribution of the terrace damages in this study were determined. We believe that this work can provide a credible framework for mapping terrace damages in the Loess Plateau of China. Numéro de notice : A2021-882 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10120805 Date de publication en ligne : 27/11/2021 En ligne : https://doi.org/10.3390/ijgi10120805 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99178
in ISPRS International journal of geo-information > vol 10 n° 12 (December 2021) . - n° 805[article]Accuracy assessment of RTK-GNSS equipped UAV conducted as-built surveys for construction site modelling / Sander Varbla in Survey review, Vol 53 n° 381 (November 2021)
![]()
[article]
Titre : Accuracy assessment of RTK-GNSS equipped UAV conducted as-built surveys for construction site modelling Type de document : Article/Communication Auteurs : Sander Varbla, Auteur ; Raido Puust, Auteur ; Artu Ellmann, Auteur Année de publication : 2021 Article en page(s) : pp 477 - 492 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] données localisées 3D
[Termes IGN] géoréférencement direct
[Termes IGN] image captée par drone
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] photogrammétrie aérienne
[Termes IGN] point d'appui
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] précision centimétrique
[Termes IGN] structure-from-motionRésumé : (Auteur) Regular as-built surveys have become a necessary input for building information modelling. Such large-scale 3D data capturing can be conducted effectively by combining structure-from-motion and unmanned aerial vehicles (UAV). Using a RTK-GNSS equipped UAV, 22 repeated weekly campaigns were conducted at two altitudes in various conditions. The photogrammetric approach yielded 3D models, which were compared to the terrestrial laser scanning based ground truth. Better than 2.8 cm geometry RMSE was consistently achieved using integrated georeferencing. It is concluded that the RTK-GNSS based georeferencing enables reaching better than 5 cm geometry accuracy by utilising at least one ground control point. Numéro de notice : A2021-912 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2020.1830544 Date de publication en ligne : 15/10/2020 En ligne : https://doi.org/10.1080/00396265.2020.1830544 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99310
in Survey review > Vol 53 n° 381 (November 2021) . - pp 477 - 492[article]Mapping canopy heights in dense tropical forests using low-cost UAV-derived photogrammetric point clouds and machine learning approaches / He Zhang in Remote sensing, vol 13 n° 18 (September-2 2021)
PermalinkA comparison of ALS and dense photogrammetric point clouds for individual tree detection in radiata pine plantations / Irfan A. Iqbal in Remote sensing, vol 13 n° 17 (September-1 2021)
PermalinkDigital terrain models generated with low-cost UAV photogrammetry: Methodology and accuracy / Sergio Jiménez-Jiménez in ISPRS International journal of geo-information, vol 10 n° 5 (May 2021)
PermalinkInfluence of flight altitude and control points in the georeferencing of images obtained by unmanned aerial vehicle / Lucas Santos Santana in European journal of remote sensing, vol 54 n° 1 (2021)
PermalinkMonitoring the coastal changes of the Po river delta (Northern Italy) since 1911 using archival cartography, multi-temporal aerial photogrammetry and LiDAR data: implications for coastline changes in 2100 A.D. / Massimo Fabris in Remote sensing, Vol 13 n° 3 (February 2021)
PermalinkPermalinkOptimisation des protocoles de numérisation 3D multi-capteurs et de fusion de données hétérogènes au sein de l'entreprise Premier plan / Elisa Gautron (2021)
PermalinkProgrammation d’un système de scannage multiple pilotable et mise en place de tests de qualité pour l’optimisation d’une chaîne de traitement photogrammétrique / Augustin Cosson (2021)
PermalinkPermalinkThe potential of LiDAR and UAV-photogrammetric data analysis to interpret archaeological sites: A case study of Chun Castle in South-West England / Israa Kadhim in ISPRS International journal of geo-information, vol 10 n° 1 (January 2021)
Permalink