Descripteur
Termes IGN > sciences humaines et sociales > géographie humaine > démographie > population > population urbaine
population urbaine |
Documents disponibles dans cette catégorie (58)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A comparative assessment of the statistical methods based on urban population density estimation / Merve Yılmaz in Geocarto international, vol 38 n° 1 ([01/01/2023])
[article]
Titre : A comparative assessment of the statistical methods based on urban population density estimation Type de document : Article/Communication Auteurs : Merve Yılmaz, Auteur Année de publication : 2023 Article en page(s) : n° 2152494 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] densité de population
[Termes IGN] planification urbaine
[Termes IGN] population urbaine
[Termes IGN] régression géographiquement pondérée
[Termes IGN] régression multiple
[Termes IGN] TurquieRésumé : (auteur) Population density is important spatial information for addressing the use and access to land resources in cities under the Sustainable Development Goals. This is because the spatial data support appropriate spatial policies at the spatial scale and predicts how much land will be consumed in the future. The study aims to compare and evaluate the regression tools in the context of estimating the population density difference. The three analysis tools used are Random Forest-Based Classification, Multiple Linear Regression, and Geographically Weighted Regression. The sampling area covers cities around Türkiye. Comparative results showed that the two most important descriptive variables in the Random Forest-Based Classification model are the density difference of the new developed area and the connectivity. The three main explanatory variables of the Multiple Linear Regression model are centrality, vehicle ownership, and accessibility. The results of the Multiple Linear Regression model (a non-spatial model) and the Geographically Weighted Regression model (a spatial model), were found to be quite similar. The importance of accessibility and connectivity is more evident in the Multiple Linear Regression model when the Random Forest-Based Classification model highlights the density values in the new development areas. Numéro de notice : A2023-055 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2022.2152494 Date de publication en ligne : 28/12/2022 En ligne : https://doi.org/10.1080/10106049.2022.2152494 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102388
in Geocarto international > vol 38 n° 1 [01/01/2023] . - n° 2152494[article]Des pixels et des peuples / Laurent Polidori in Géomètre, n° 2190 (avril 2021)
[article]
Titre : Des pixels et des peuples Type de document : Article/Communication Auteurs : Laurent Polidori, Auteur Année de publication : 2021 Article en page(s) : pp 15 - 15 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] croissance urbaine
[Termes IGN] détection de changement
[Termes IGN] frontière
[Termes IGN] image thermique
[Termes IGN] indicateur démographique
[Termes IGN] mode d'occupation du sol
[Termes IGN] population rurale
[Termes IGN] population urbaineRésumé : (Auteur) Instruments de mesure physique, les satellites sont parfois utilisés pour l'étude des sociétés. Numéro de notice : A2021-324 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtSansCL DOI : sans Date de publication en ligne : 07/04/2021 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97482
in Géomètre > n° 2190 (avril 2021) . - pp 15 - 15[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 063-2021041 RAB Revue Centre de documentation En réserve L003 Disponible Development and analysis of land-use/land-cover spatio-temporal metrics in urban environments: Exploring urban growth patterns and linkages to socio-economic factors / Marta Sapena Moll (2021)
Titre : Development and analysis of land-use/land-cover spatio-temporal metrics in urban environments: Exploring urban growth patterns and linkages to socio-economic factors Type de document : Thèse/HDR Auteurs : Marta Sapena Moll, Auteur ; Luis Angel Ruiz Fernandez, Directeur de thèse Editeur : Valencia : Universitat politécnica de Valencia Année de publication : 2021 Importance : 268 p. Format : 21 x 30 cm Note générale : bibliographie
PhD in Geomatics Engineering, Universidad politécnica de ValenciaLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse discriminante
[Termes IGN] analyse spatio-temporelle
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] croissance urbaine
[Termes IGN] données socio-économiques
[Termes IGN] implémentation (informatique)
[Termes IGN] milieu urbain
[Termes IGN] modélisation spatiale
[Termes IGN] occupation du sol
[Termes IGN] population urbaine
[Termes IGN] régression linéaire
[Termes IGN] Rhénanie du Nord-Wesphalie (Allemagne)
[Termes IGN] utilisation du sol
[Termes IGN] ville durableRésumé : (auteur) This thesis addresses the development and analysis of new tools and methods for monitoring and characterizing urban growth using geo-data and land-use/land-cover (LULC) databases, as well as exploring their relationships with socio-economic factors, providing new evidences regarding the use of LULC data for urban characterization at different levels by means of spatial and statistical methods. First, the most common spatio-temporal metrics were compiled and implemented within a software tool, IndiFrag. Then, we present a methodology based on spatio-temporal metrics and propose a new index that quantifies the inequality of growth between population and built-up areas to analyze and compare urban growth patterns at different levels. This allowed for a differentiation of growing patterns, besides, the analysis at various levels contributed to a better understanding of such patterns. Second, we quantified the two-way relationship between the urban structure in cities and their socio-economic status by means of spatial metrics issued from a local climate zone map for 31 cities in North Rhine-Westphalia, Germany. Based on these data, we quantified their relationship with socio-economic indicators by means of multiple linear regression models, explaining a significant part of their variability. The proposed method is transferable to other datasets, levels, and regions. Third, we assessed the use of spatio-temporal metrics derived from LULC maps to identify urban growth spatial patterns. We applied LULC change models to simulate different long-term scenarios of urban growth following various spatial patterns on diverse baseline urban forms. Then, we computed spatio-temporal metrics for the simulated scenarios, selected the most explanatory by applying a discriminant analysis and classified the growth patterns using clustering methods. Finally, we identified empirical relationships between socio-economic indicators and their change over time with the spatial structure of the built and natural elements in up to 600 urban areas from 32 countries. We employed random forest regression models and the spatio-temporal metrics were able to explain substantially the variability of socio-economic variables. This confirms that spatial patterns and their change are linked to socio-economic indicators. This work contributes to a better understanding of urban growth patterns and improves knowledge about the relationships between urban spatial structure and socio-economic factors, providing new methods for monitoring and assessing urban sustainability by means of LULC databases, which could be used by researchers, urban planners and decision-makers to ensure the sustainable future of urban environments. Note de contenu : 1- Introduction
2- Hypotheses and objectives
3- Spatio-temporal analysis of LULC and population in urban areas
4- Relationships between spatial patterns of urban structure and quality of life
5- Spatio-temporal metrics for urban growth spatial pattern categorization
6- Linking spatio-temporal metrics of built-up areas to socio-economic indicators on a semi-global scale
7- ConclusionsNuméro de notice : 28308 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Thèse étrangère Note de thèse : PhD Thesis : Geomatics Engineering : Valencia, Spain : 2021 Organisme de stage : German Aerospace Center DOI : 10.4995/Thesis/10251/158626 En ligne : https://doi.org/10.4995/Thesis/10251/158626 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98112 Exploring the heterogeneity of human urban movements using geo-tagged tweets / Ding Ma in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
[article]
Titre : Exploring the heterogeneity of human urban movements using geo-tagged tweets Type de document : Article/Communication Auteurs : Ding Ma, Auteur ; Toshihiro Osaragi, Auteur ; Takuya Oki, Auteur ; Bin Jiang, Auteur Année de publication : 2020 Article en page(s) : pp 2475 -2 496 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] espace urbain
[Termes IGN] flux de données
[Termes IGN] géobalise
[Termes IGN] géolocalisation
[Termes IGN] hétérogénéité
[Termes IGN] Londres
[Termes IGN] migration humaine
[Termes IGN] modèle de simulation
[Termes IGN] modèle orienté agent
[Termes IGN] population urbaine
[Termes IGN] Tokyo (Japon)
[Termes IGN] TwitterRésumé : (auteur) The availability of vast amounts of location-based data from social media platforms such as Twitter has enabled us to look deeply into the dynamics of human movement. The aim of this paper is to leverage a large collection of geo-tagged tweets and the street networks of two major metropolitan areas—London and Tokyo—to explore the underlying mechanism that determines the heterogeneity of human mobility patterns. For the two target cities, hundreds of thousands of tweet locations and road segments were processed to generate city hotspots and natural streets. User movement trajectories and city hotspots were then used to build a hotspot network capable of quantitatively characterizing the heterogeneous movement patterns of people within the cities. To emulate observed movement patterns, the study conducts a two-level agent-based simulation that includes random walks through the hotspot networks and movements in the street networks using each of three distance types—metric, angular and combined. Comparisons of the simulated and observed movement flows at the segment and street levels show that the heterogeneity of human urban movements at the collective level is mainly shaped by the scaling structure of the urban space. Numéro de notice : A2020-692 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1718153 Date de publication en ligne : 24/01/2020 En ligne : https://doi.org/10.1080/13658816.2020.1718153 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96233
in International journal of geographical information science IJGIS > vol 34 n° 12 (December 2020) . - pp 2475 -2 496[article]Impact of extreme weather events on urban human flow: A perspective from location-based service data / Zhenhua Chen in Computers, Environment and Urban Systems, vol 83 (September 2020)
[article]
Titre : Impact of extreme weather events on urban human flow: A perspective from location-based service data Type de document : Article/Communication Auteurs : Zhenhua Chen, Auteur ; Zhaoya Gong, Auteur ; Yang Shan, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 101520 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] cyclone
[Termes IGN] données de flux
[Termes IGN] phénomène climatique extrême
[Termes IGN] plan de déplacement urbain
[Termes IGN] planification urbaine
[Termes IGN] point d'intérêt
[Termes IGN] population urbaine
[Termes IGN] Shenzhen
[Termes IGN] système d'information géographiqueRésumé : (auteur) This study investigates the impact of extreme weather events on urban human flow disruptions using location-based service data obtained from Baidu Map. Utilizing the 2018 Typhoon Mangkhut as an example, the spatial and temporal variations of urban human flow patterns in Shenzhen are examined using GIS and spatial flow analysis. In addition, the variation of human flow by different urban functions (e.g. transport, recreational, institutional, commercial and residential related facilities) is also examined through an integration of flow data and point-of-interest (POI) data. The study reveals that urban flow patterns varied substantially before, during, and after the typhoon. Specifically, urban flows were found to have reduced by 39% during the disruption. Conversely, 56% of flows increased immediately after the disruption. In terms of functional variation, the assessment reveals that fundamental urban functions, such as industrial (work) and institutional - (education) related trips experienced less disruption, whereas the typhoon event appears to have a relatively larger negative influence on recreational related trips. Overall, the study provides implications for planners and policy makers to enhance urban resilience to disasters through a better understanding of the urban vulnerability to disruptive events. Numéro de notice : A2020-699 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2020.101520 Date de publication en ligne : 07/07/2020 En ligne : https://doi.org/10.1016/j.compenvurbsys.2020.101520 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96253
in Computers, Environment and Urban Systems > vol 83 (September 2020) . - n° 101520[article]Estimating and interpreting fine-scale gridded population using random forest regression and multisource data / Yun Zhou in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)PermalinkExtracting activity patterns from taxi trajectory data: a two-layer framework using spatio-temporal clustering, Bayesian probability and Monte Carlo simulation / Shuhui Gong in International journal of geographical information science IJGIS, vol 34 n° 6 (June 2020)PermalinkMapping urban grey and green structures for liveable cities using a 3D enhanced OBIA approach and vital statistics / E. Banzhaf in Geocarto international, vol 35 n° 6 ([01/05/2020])PermalinkA review of assessment methods for cellular automata models of land-use change and urban growth / Xiaohua Tong in International journal of geographical information science IJGIS, vol 34 n° 5 (May 2020)PermalinkA methodology with a distributed algorithm for large-scale trajectory distribution prediction / QiuLei Guo in International journal of geographical information science IJGIS, Vol 33 n° 3-4 (March - April 2019)PermalinkPermalinkFine-grained prediction of urban population using mobile phone location data / Jie Chen in International journal of geographical information science IJGIS, vol 32 n° 9-10 (September - October 2018)PermalinkA two-stage estimation method with bootstrap inference for semi-parametric geographically weighted generalized linear models / Dengkui Li in International journal of geographical information science IJGIS, vol 32 n° 9-10 (September - October 2018)PermalinkGen*: a generic toolkit to generate spatially explicit synthetic populations / Kevin Chapuis in International journal of geographical information science IJGIS, vol 32 n° 5-6 (May - June 2018)PermalinkMapping hourly dynamics of urban population using trajectories reconstructed from mobile phone records / Zhang Liu in Transactions in GIS, vol 22 n° 2 (April 2018)Permalink