Descripteur
Termes IGN > sciences humaines et sociales > vie des organisations > gestion des risques > prévention des risques > surveillance géologique
surveillance géologique |
Documents disponibles dans cette catégorie (185)



Etendre la recherche sur niveau(x) vers le bas
Detection and characterization of slow-moving landslides in the 2017 Jiuzhaigou earthquake area by combining satellite SAR observations and airborne Lidar DSM / Jiehua Cai in Engineering Geology, vol 305 (August 2022)
![]()
[article]
Titre : Detection and characterization of slow-moving landslides in the 2017 Jiuzhaigou earthquake area by combining satellite SAR observations and airborne Lidar DSM Type de document : Article/Communication Auteurs : Jiehua Cai, Auteur ; Lu Zhang, Auteur ; Jie Dong, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 106730 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie des risques
[Termes IGN] déformation de surface
[Termes IGN] données lidar
[Termes IGN] données multisources
[Termes IGN] effondrement de terrain
[Termes IGN] géomorphologie
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image optique
[Termes IGN] image Sentinel-SAR
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] MNS lidar
[Termes IGN] MNS SRTM
[Termes IGN] séisme
[Termes IGN] Setchouan (Chine)
[Termes IGN] surveillance géologiqueRésumé : (auteur) On 8th August 2017, a catastrophic Ms. 7.0 earthquake with a focal depth of 20 km struck the Jiuzhaigou County in Sichuan Province, China. It exerted a strong influence on the slope stability within the surrounding areas and triggered numerous secondary geohazards including rockfalls and other co-seismic landslides, which incurred drastic surface changes, and thus can be easily identified from cloud-free high-resolution optical imagery. Most of such landslides became stabilized shortly after the earthquake while others moving very slowly for years. In contrast, some slopes were destabilized without significant surface change into slow-moving landslides, which may pose long-term potential threats to people's life and property. Therefore, it is crucial to accurately identify these slow-moving landslides and regularly monitor their post-seismic activity. In this study, we employed the synthetic aperture radar interferometry (InSAR) techniques to detect and monitor slow-moving landslides after the earthquake in the Jiuzhaigou area, and analyzed the impacts of the earthquake on these landslides through integration of multi-source data (InSAR, Lidar, optical image, and field survey). As a result, 16 slow-moving landslides were detected by InSAR in the Jiuzhaigou area, including several historical landslides. The results of time-series InSAR analyses enabled identification of three kinds of landslide evolution modes affected by the earthquake, i.e. acceleration of deformation of pre-existing landslides, reactivation of dormant landslide, and remobilization of earthquake-triggered landslide. Each mode is supported by detailed analyses of multi-source data. The results demonstrated that satellite InSAR combined with high-resolution Lidar and optical data can provide a cost-effective approach of post-earthquake geohazards detection and monitoring. Numéro de notice : A2022-469 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.enggeo.2022.106730 Date de publication en ligne : 28/05/2022 En ligne : https://doi.org/10.1016/j.enggeo.2022.106730 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100811
in Engineering Geology > vol 305 (August 2022) . - n° 106730[article]Cliff change detection using siamese KPCONV deep network on 3D point clouds / Iris de Gelis in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-3-2022 (2022 edition)
![]()
[article]
Titre : Cliff change detection using siamese KPCONV deep network on 3D point clouds Type de document : Article/Communication Auteurs : Iris de Gelis, Auteur ; Zoé Bessin, Auteur ; Pauline Letortu, Auteur ; Marion Jaud, Auteur ; C. Delacourt, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 649 - 656 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection de changement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] érosion côtière
[Termes IGN] falaise
[Termes IGN] semis de points
[Termes IGN] surveillance géologiqueMots-clés libres : KPConv = Kernel Point Convolution Résumé : (auteur) Mainly depending on their lithology, coastal cliffs are prone to changes due to erosion. This erosion could increase due to climate change leading to potential threats for coastal users, assets, or infrastructure. Thus, it is important to be able to understand and characterize cliff face changes at fine scale. Usually, monitoring is conducted thanks to distance computation and manual analysis of each cliff face over 3D point clouds to be able to study 3D dynamics of cliffs. This is time consuming and inclined to each one judgment in particular when dealing with 3D point clouds data. Indeed, 3D point clouds characteristics (sparsity, impossibility of working on a classical top view representation, volume of data, …) make their processing harder than 2D images. Last decades, an increase of performance of machine learning methods for earth observation purposes has been performed. To the best of our knowledge, deep learning has never been used for 3D change detection and categorization in coastal cliffs. Lately, Siamese KPConv brings successful results for change detection and categorization into 3D point clouds in urban area. Although the case study is different by its more random characteristics and its complex geometry, we demonstrate here that this method also allows to extract and categorize changes on coastal cliff face. Results over the study area of Petit Ailly cliffs in Varengeville-sur-Mer (France) are very promising qualitatively as well as quantitatively: erosion is retrieved with an intersection over union score of 83.86 %. Numéro de notice : A2022-444 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.5194/isprs-annals-V-3-2022-649-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-3-2022-649-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100779
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-3-2022 (2022 edition) . - pp 649 - 656[article]Multi-method monitoring of rockfall activity along the classic route up Mont Blanc (4809 m a.s.l.) to encourage adaptation by mountaineers / Jacques Mourey in Natural Hazards and Earth System Sciences, vol 22 n° 2 (February 2022)
![]()
[article]
Titre : Multi-method monitoring of rockfall activity along the classic route up Mont Blanc (4809 m a.s.l.) to encourage adaptation by mountaineers Type de document : Article/Communication Auteurs : Jacques Mourey, Auteur ; Pascal Lacroix, Auteur ; Pierre-Allain Duvillard, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 445 - 460 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] capteur actif
[Termes IGN] capteur non-imageur
[Termes IGN] carte thématique
[Termes IGN] détection de changement
[Termes IGN] éboulement
[Termes IGN] modèle numérique de terrain
[Termes IGN] Mont-Blanc, massif du
[Termes IGN] onde sismique
[Termes IGN] pergélisol
[Termes IGN] prévention des risques
[Termes IGN] risque naturel
[Termes IGN] saison
[Termes IGN] sismologie
[Termes IGN] surveillance géologique
[Termes IGN] température de l'airRésumé : (auteur) There are on average 35 fatal mountaineering accidents per summer in France. On average, since 1990, 3.7 of them have occurred every summer in the Grand Couloir du Goûter, on the classic route up Mont Blanc (4809 m a.s.l.). Rockfall is one of the main factors that explain this high accident rate and contribute to making it one of the most accident-prone areas in the Alps for mountaineers. In this particular context, the objective of this study is to document the rockfall activity and its triggering factors in the Grand Couloir du Goûter in order to disseminate the results to mountaineers and favour their adaptation to the local rockfall hazard. Using a multi-method monitoring system (five seismic sensors, an automatic digital camera, three rock subsurface temperature sensors, a traffic sensor, a high-resolution topographical survey, two weather stations and a rain gauge), we acquired a continuous database on rockfalls during a period of 68 d in 2019 and some of their potential triggering factors (precipitation, ground and air temperatures, snow cover, frequentation by climbers). At the seasonal scale, our results confirm previous studies showing that rockfalls are most frequent during the snowmelt period in permafrost-affected rockwalls. Furthermore, the unprecedented time precision and completeness of our rockfall database at high elevation thanks to seismic sensors allowed us to investigate the factors triggering rockfalls. We found a clear correlation between rockfall frequency and air temperature, with a 2 h delay between peak air temperature and peak rockfall activity. A small number of rockfalls seem to be triggered by mountaineers. Our data set shows that climbers are not aware of the variations in rockfall frequency and/or cannot/will not adapt their behaviour to this hazard. These results should help to define an adaptation strategy for climbers. Therefore, we disseminated our results within the mountaineering community thanks to the full integration of our results into the management of the route by local actors. Knowledge built during this experiment has already been used for the definition and implementation of management measures for the attendance in summer 2020. Numéro de notice : A2022-181 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article DOI : 10.5194/nhess-22-445-2022 En ligne : https://doi.org/10.5194/nhess-22-445-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99859
in Natural Hazards and Earth System Sciences > vol 22 n° 2 (February 2022) . - pp 445 - 460[article]Validation of the accuracy of geodetic automated measurement system based on GNSS platform for continuous monitoring of surface movements in post-mining areas / Violetta Sokoła-Szewioła in Reports on geodesy and geoinformatics, vol 112 n° 1 (December 2021)
![]()
[article]
Titre : Validation of the accuracy of geodetic automated measurement system based on GNSS platform for continuous monitoring of surface movements in post-mining areas Type de document : Article/Communication Auteurs : Violetta Sokoła-Szewioła, Auteur ; Zbigniew Siejka, Auteur Année de publication : 2021 Article en page(s) : pp 47 - 57 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] coordonnées GNSS
[Termes IGN] mine
[Termes IGN] Pologne
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] précision du positionnement
[Termes IGN] surveillance géologiqueRésumé : (auteur) The problem involving the monitoring of surface ground movements in post-mining areas is particularly important during the period of mine closures. During or after flooding of a mine, mechanical properties of the rock mass may be impaired, and this may trigger subsidence, surface landslides, uplift, sinkholes or seismic activity. It is, therefore, important to examine and select updating methods and plans for long-term monitoring of post-mining areas to mitigate seismic hazards or surface deformation during and after mine closure. The research assumed the implementation of continuous monitoring of surface movements using the Global Navigation Satellite System (GNSS) in the area of a closed hard coal mine ‘Kazimierz-Juliusz’, located in Poland. In order to ensure displacement measurement results with the accuracy of several millimetres, the accuracy of multi-GNSS observations carried out in real time as a combination of four global navigation systems, Global Positioning System (GPS), Globalnaja Navigacionnaja Sputnikova Sistema (GLONASS), Galileo and BeiDou, was determined. The article presents the results of empirical research conducted at four reference points. The test observations were made in variants comprising measurements based on: GPS, GPS and GLONASS systems, GPS, GLONASS and Galileo systems, GPS, GLONASS, Galileo and BeiDou systems. For each adopted solution, daily measurement sessions were performed using the RTK technique. The test results were subjected to accuracy analyses. Based on the obtained results, it was found that GNSS measurements should be carried out with the use of three navigation systems (GPS, GLONASS, Galileo), as an optimal solution for the needs of continuous geodetic monitoring in the area of the study. Numéro de notice : A2021-963 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.2478/rgg-2021-0007 Date de publication en ligne : 30/12/2021 En ligne : https://doi.org/10.2478/rgg-2021-0007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100115
in Reports on geodesy and geoinformatics > vol 112 n° 1 (December 2021) . - pp 47 - 57[article]Persistent scatterer interferometry for Pettimudi (India) landslide monitoring using Sentinel-1A images / Hari Shankar in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 11 (November 2021)
![]()
[article]
Titre : Persistent scatterer interferometry for Pettimudi (India) landslide monitoring using Sentinel-1A images Type de document : Article/Communication Auteurs : Hari Shankar, Auteur ; Arijit Roy, Auteur ; Prakash Chauhan, Auteur Année de publication : 2021 Article en page(s) : pp 853 - 862 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] déformation de la croute terrestre
[Termes IGN] effondrement de terrain
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] Inde
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] précipitation
[Termes IGN] risque naturel
[Termes IGN] série temporelle
[Termes IGN] surveillance géologiqueRésumé : (Auteur) The continuous monitoring of land surface movement over time is of paramount importance for assessing landslide triggering factors and mitigating landslide hazards. This research focuses on measuring horizontal and vertical surface displacement due to a devastating landslide event in the west-facing slope of the Rajamala Hills, induced by intense rainfall. The landslide occurred in Pettimudi, a tea-plantation village of the Idukki district in Kerala, India, on August 6–7, 2020. The persistent-scatterer synthetic aperture radar interferometry (PSInSAR ) technique, along with the Stanford Method for Persistent Scatterers (StaMPS), was applied to investigate the land surface movement over time. A stack of 20 Sentinel-1A single-look complex images (19 interferograms) acquired in descending passes was used for PSInSAR processing. The line-of-sight (LOS ) displacement in long time series, and hence the average LOS velocity, was measured at each measurement-point location. The mean LOS velocity was decomposed into horizontal east–west (EW ) and vertical up–down velocity components. The results show that the mean LOS, EW, and up–down velocities in the study area, respectively, range from –18.76 to +11.88, –10.95 to +6.93, and –15.05 to +9.53 mm/y, and the LOS displacement ranges from –19.60 to +19.59 mm. The displacement values clearly indicate the instability of the terrain. The time-series LOS displacement trends derived from the applied PSInSAR technique are very useful for providing valuable inputs for disaster management and the development of disaster early-warning systems for the benefit of local residents. Numéro de notice : A2021-897 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00020R3 Date de publication en ligne : 01/11/2021 En ligne : https://doi.org/10.14358/PERS.21-00020R3 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99275
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 11 (November 2021) . - pp 853 - 862[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021111 SL Revue Centre de documentation Revues en salle Disponible Investigation of the landslides in Beylikdüzü-Esenyurt districts of Istanbul from InSAR and GNSS observations / Caglar Bayik in Natural Hazards, vol 109 n° 1 (October 2021)
PermalinkInvestigating the application of artificial intelligence for earthquake prediction in Terengganu / Suzlyana Marhain in Natural Hazards, vol 108 n° 1 (August 2021)
PermalinkApplying planetary mapping methods to submarine environments: onshore-offshore geomorphology of Christiana-Santorini-Kolumbo Volcanic Group, Greece / Alexandra E. Huff in Journal of maps, vol 17 n° 3 (July 2021)
PermalinkDynamique contrastée de la compaction d’un ferralsol après une défriche mécanisée alternative en Guyane française / Xavier Guerrini in Bois et forêts des tropiques, n° 348 ([01/07/2021])
PermalinkIntegration of an InSAR and ANN for sinkhole susceptibility mapping: A case study from Kirikkale-Delice (Turkey) / Hakan Nefeslioglu in ISPRS International journal of geo-information, vol 10 n° 3 (March 2021)
PermalinkReclaimed-airport surface-deformation monitoring by improved permanent-scatterer interferometric synthetic-aperture radar: a case study of Shenzhen Bao'an international airport, China / Lu Miao in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 2 (February 2021)
PermalinkImpact of forest disturbance on InSAR surface displacement time series / Paula M. Bürgi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkPermalinkBayesian-deep-learning estimation of earthquake location from single-station observations / S. Mostafa Mousavi in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkMacrozonation of seismic transient and permanent ground deformation of Iran / Saeideh Farahani in Natural Hazards and Earth System Sciences, vol 20 n° 11 (November 2020)
Permalink