Descripteur
Termes descripteurs IGN > sciences naturelles > physique > optique > optique physique > radiométrie > spectroradiométrie
spectroradiométrie |



Etendre la recherche sur niveau(x) vers le bas
Use of visible and near-infrared reflectance spectroscopy models to determine soil erodibility factor (K) in an ecologically restored watershed / Qinghu Jiang in Remote sensing, vol 12 n° 18 (September 2020)
![]()
[article]
Titre : Use of visible and near-infrared reflectance spectroscopy models to determine soil erodibility factor (K) in an ecologically restored watershed Type de document : Article/Communication Auteurs : Qinghu Jiang, Auteur ; Yiyun Chen, Auteur ; Jialiang Hu, Auteur ; Feng Liu, Auteur Année de publication : 2020 Article en page(s) : 16 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] bassin hydrographique
[Termes descripteurs IGN] érosion
[Termes descripteurs IGN] étalonnage de modèle
[Termes descripteurs IGN] image proche infrarouge
[Termes descripteurs IGN] image visible
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] régression des moindres carrés partiels
[Termes descripteurs IGN] sol arable
[Termes descripteurs IGN] spectroscopie
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) This study aimed to assess the ability of using visible and near-infrared reflectance (Vis–NIR) spectroscopy to quantify soil erodibility factor (K) rapidly in an ecologically restored watershed. To achieve this goal, we explored the performance and transferability of the developed spectral models in multiple land-use types: woodland, shrubland, terrace, and slope farmland (the first two types are natural land and the latter two are cultivated land). Subsequently, we developed an improved approach by combining spectral data with related topographic variables (i.e., elevation, watershed location, slope height, and normalized height) to estimate K. The results indicate that the calibrated spectral model using total samples could estimate K factor effectively (R2CV = 0.71, RMSECV = 0.0030 Mg h Mj−1 mm−1, and RPDCV = 1.84). When predicting K in the new samples, models performed well in natural land soils (R2P = 0.74, RPDP = 1.93) but failed in cultivated land soils (R2P = 0.24, RPDP = 0.99). Furthermore, the developed models showed low transferability between the natural and cultivated land datasets. The results also indicate that the combination of spectral data with topographic variables could slightly increase the accuracies of K estimation in total and natural land datasets but did not work for cultivated land samples. This study demonstrated that the Vis–NIR spectroscopy could be used as an effective method in predicting K. However, the predictability and transferability of the calibrated models were land-use type dependent. Our study also revealed that the coupling of spectrum and environmental variable is an effective improvement of K estimation in natural landscape region Numéro de notice : A2020-631 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs12183103 date de publication en ligne : 22/09/2020 En ligne : https://doi.org/10.3390/rs12183103 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96052
in Remote sensing > vol 12 n° 18 (September 2020) . - 16 p.[article]Complete and accurate data correction for seamless mosaicking of airborne hyperspectral images: A case study at a mining site in Inner Mongolia, China / Kun Tan in ISPRS Journal of photogrammetry and remote sensing, vol 165 (July 2020)
![]()
[article]
Titre : Complete and accurate data correction for seamless mosaicking of airborne hyperspectral images: A case study at a mining site in Inner Mongolia, China Type de document : Article/Communication Auteurs : Kun Tan, Auteur ; Chao Niu, Auteur ; Xiuping Jia, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1 - 15 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] atténuation
[Termes descripteurs IGN] correction atmosphérique
[Termes descripteurs IGN] distorsion du signal
[Termes descripteurs IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] mine
[Termes descripteurs IGN] Mongolie intérieure (Chine)
[Termes descripteurs IGN] mosaïquage d'images
[Termes descripteurs IGN] radiance
[Termes descripteurs IGN] rayonnement infrarouge
[Termes descripteurs IGN] réflectance de surface
[Termes descripteurs IGN] Short Waves InfraRed
[Termes descripteurs IGN] spectroradiométrie
[Termes descripteurs IGN] surveillance écologiqueRésumé : (auteur) Airborne hyperspectral remote sensing is an important application in the ecological monitoring of the environment in mining areas, and accurate preprocessing of the original images is the key to quantitative information retrieval. The original image data need radiation correction to acquire surface reflectance data. Due to the impact of the field angle, incidental radiance, and the bidirectional reflectance distribution function (BRDF), there can be a brightness gradient between adjacent strips, which leads to radiance difference and obvious chromatic aberration of the mosaicked images. We propose a novel data correction method for seamless mosaicking of airborne hyperspectral images. Firstly, visible and near-infrared (VNIR) and shortwave infrared (SWIR) sensors are calibrated in the laboratory, and the radiation calibration model of the sensor is established by an integrating-sphere system. A correction function is then established by combining the BRDF effect and the radiation attenuation coefficients. We also normalize the exposure time, sun altitude angle, and sensor altitude angle according to the flight strip. The results showed that this method is able to eliminate the signal distortion, allowing the seamless mosaicking of 37 strip images which were taken in different date and conditions in the study area. After the atmospheric correction of the imagery was completed, the accuracy of the preprocessing results was evaluated by field-measured ASD spectroradiometer data. The coefficient of determination R2 of the results for the reflectance was greater than 0.9. The experiments show that the proposed method has a good performance in radiation accuracy, and can provide high-quality hyperspectral data for the follow-up application of the ecological monitoring of a mining area. Numéro de notice : A2020-465 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.04.022 date de publication en ligne : 16/05/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.04.022 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95092
in ISPRS Journal of photogrammetry and remote sensing > vol 165 (July 2020) . - pp 1 - 15[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020071 SL Revue Centre de documentation Revues en salle Disponible 081-2020073 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Aqueous alteration mapping in Rishabdev ultramafic complex using imaging spectroscopy / Hrishikesh Kumar in International journal of applied Earth observation and geoinformation, vol 88 (June 2020)
![]()
[article]
Titre : Aqueous alteration mapping in Rishabdev ultramafic complex using imaging spectroscopy Type de document : Article/Communication Auteurs : Hrishikesh Kumar, Auteur ; A.S. Rajawat, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] bande spectrale
[Termes descripteurs IGN] cartographie géologique
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image AVIRIS
[Termes descripteurs IGN] image infrarouge
[Termes descripteurs IGN] minéral
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] Rajasthan (Inde ; état)
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] roche
[Termes descripteurs IGN] spectroradiométrieRésumé : (auteur) Hyperspectral remote sensing/imaging spectroscopy has enabled precise identification and mapping of hydrothermal alteration mineral assemblages based on diagnostic absorption features of minerals. In the present study, we use Airborne Visible InfraRed Imaging Spectrometer-Next Generation (AVIRIS-NG) datasets acquired over Rishabdev ultramafic suite to derive surficial mineral map using least square based spectral shape matching in wavelength range of diagnostic absorption features of minerals. Resulting mineral map revealed presence of hydrothermally altered serpentine group of minerals and associated alteration products (talc and dolomite) along with clays and phyllosilicates. Mineral maps are validated using field spectral measurements and published geological map. Involvement of low temperature ( Numéro de notice : A2020-449 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2020.102084 date de publication en ligne : 14/02/2020 En ligne : https://doi.org/10.1016/j.jag.2020.102084 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95525
in International journal of applied Earth observation and geoinformation > vol 88 (June 2020)[article]A machine learning approach to detect crude oil contamination in a real scenario using hyperspectral remote sensing / Ran Pelta in International journal of applied Earth observation and geoinformation, vol 82 (October 2019)
![]()
[article]
Titre : A machine learning approach to detect crude oil contamination in a real scenario using hyperspectral remote sensing Type de document : Article/Communication Auteurs : Ran Pelta, Auteur ; Nimrod Carmon, Auteur ; Eyal Ben-Dor, Auteur Année de publication : 2019 Article en page(s) : 15 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] apprentissage dirigé
[Termes descripteurs IGN] étalonnage de modèle
[Termes descripteurs IGN] hydrocarbure
[Termes descripteurs IGN] image aérienne
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image infrarouge
[Termes descripteurs IGN] image proche infrarouge
[Termes descripteurs IGN] Israël
[Termes descripteurs IGN] Kappa de Cohen
[Termes descripteurs IGN] pétrole
[Termes descripteurs IGN] photo-interprétation
[Termes descripteurs IGN] pollution des sols
[Termes descripteurs IGN] réflectance du sol
[Termes descripteurs IGN] spectroscopieRésumé : (auteur) One of the most ubiquitous and detrimental types of environmental contamination in the world is crude oil pollution. When released into either the aquatic or terrestrial environments, this pollution can negatively impact flora and fauna, as well as human health. Hence, a rapid and affordable spatial assessment of the pollution is favored to limit the spill’s effects. Using airborne hyperspectral remote sensing (HRS) for crude oil detection in terrestrial areas has been investigated in previous studies, which mainly relied on heavily oiled artificial samples. These studies and others based their methodologies on the premise that the spectral features of petroleum hydrocarbon (PHC) are clearly observable, which might not be true in all cases. In this study, we aimed at assessing the true potential of using HRS for terrestrial oil spill mapping in a real disaster site in southern Israel, where laboratory and controlled conditions do not apply. Using the AISA SPECIM Fenix1 K sensor, we collected airborne image of the study site and analyzed the data with advanced data mining techniques. Various challenges and limitations arose from the airborne HRS image being taken two and a half years after the crude oil had been released into the environment and exposed to the surface. Here, no spectral features of PHC were detectable in the spectrum, preventing the use of PHC indices and spectral methods developed by others. Nevertheless, by using standardization techniques, vicarious band selection, dimension reduction, multivariate calibration, and supervised machine-learning, we were able to successfully distinguish between contaminated pixels from non-contaminated ones. Classification accuracy metrics of overall accuracy, sensitivity, specificity, and Kappa yielded good results of 0.95, 0.95, 0.95 and 0.9, respectively, for cross-validation, and 0.93, 0.91, 0.94 and 0.85, for the validation dataset. Classified image and test scenes also showed strong agreement with an orthophoto image taken several days after the disaster, when the pollution was clearly visible. Thus, we conclude that HRS technology can detect PHC traces in an oil spill site, even under the most challenging conditions. Numéro de notice : A2019-475 Affiliation des auteurs : non IGN Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2019.101901 date de publication en ligne : 22/06/2019 En ligne : https://doi.org/10.1016/j.jag.2019.101901 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93636
in International journal of applied Earth observation and geoinformation > vol 82 (October 2019) . - 15 p.[article]Mapping leaf chlorophyll content from Sentinel-2 and RapidEye data in spruce stands using the invertible forest reflectance model / Roshanak Darvishzadeh in International journal of applied Earth observation and geoinformation, vol 79 (July 2019)
![]()
[article]
Titre : Mapping leaf chlorophyll content from Sentinel-2 and RapidEye data in spruce stands using the invertible forest reflectance model Type de document : Article/Communication Auteurs : Roshanak Darvishzadeh, Auteur ; Andrew K. Skidmore, Auteur ; Haidi Abdullah, Auteur ; Elias Cherenet, Auteur Année de publication : 2019 Article en page(s) : pp 58-70 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse multibande
[Termes descripteurs IGN] bande rouge
[Termes descripteurs IGN] bande spectrale
[Termes descripteurs IGN] Bavière (Allemagne)
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] image RapidEye
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] modèle d'inversion
[Termes descripteurs IGN] Picea abies
[Termes descripteurs IGN] réflectance végétale
[Termes descripteurs IGN] spectrophotométrie
[Termes descripteurs IGN] teneur en chlorophylle des feuillesRésumé : (auteur) Leaf chlorophyll plays an essential role in controlling photosynthesis, physiological activities and forest health. In this study, the performance of Sentinel-2 and RapidEye satellite data and the Invertible Forest Reflectance Model (INFORM) radiative transfer model (RTM) for retrieving and mapping of leaf chlorophyll content in the Norway spruce (Picea abies) stands of a temperate forest was evaluated. Biochemical properties of leaf samples as well as stand structural characteristics were collected in two subsequent field campaigns during July 2015 and 2016 in the Bavarian Forest National Park (BFNP), Germany, parallel with the timing of the RapidEye and Sentinel-2 images. Leaf chlorophyll was measured both destructively and nondestructively using wet chemical spectrophotometry analysis and a hand-held chlorophyll content meter. The INFORM was utilised in the forward mode to generate two lookup tables (LUTs) in the spectral band settings of RapidEye and Sentinel-2 data using information obtained from the field campaigns. Before generating the LUTs, the sensitivity of the model input parameters to the spectral data from RapidEye and Sentinel-2 were examined. The canopy reflectance of the studied plots were obtained from the satellite images and used as input for the inversion of LUTs. The coefficient of determination (R2), root mean square errors (RMSE), and the normalised root mean square errors (NRMSE), between the retrieved and measured leaf chlorophyll, were then used to examine the attained results from RapidEye and Sentinel-2 data, respectively. The use of multiple solutions and spectral subsets for the inversion process were further investigated to enhance the retrieval accuracy of foliar chlorophyll. The result of the sensitivity analysis demonstrated that the simulated canopy reflectance of Sentinel-2 is sensitive to the alternation of all INFORM input parameters, while the simulated canopy reflectance from RapidEye did not show sensitivity to leaf water content variations. In general, there was agreement between the simulated and measured reflectance spectra from RapidEye and Sentinel-2, particularly in the visible and red-edge regions. However, examining the average absolute error from the simulated and measured reflectance revealed a large discrepancy in spectral bands around the near-infrared shoulder. The relationship between retrieved and measured leaf chlorophyll content from the Sentinel-2 data had a higher coefficient of determination with a higher NRMSE (NRMSE = 0.36 μg/cm2, R2 = 0.45) compared to those obtained using the RapidEye data (NRMSE = 0.31 μg/cm2 and R2 = 0.39). Using the mean of the ten best solutions (retrieved chlorophyll) the retrieval error for both Sentinel-2 and RapidEye data decreased (NRMSE = 0.34, NRMSE = 0.26, respectively), as compared to only selecting the single best solution. When the Sentinel-2 red edge bands were used as the spectral subset, the retrieval error of leaf chlorophyll decreased indicating the importance of red edge, as well as properly located spectral bands, for leaf chlorophyll estimation. The chlorophyll maps produced by the inversion of the two LUTs effectively represented the variation of foliar chlorophyll in BFNP and confirmed our earlier findings on the observed stress pattern caused by insect infestation. Our findings emphasise the importance of multispectral satellites which benefits from red edge spectral bands such as Sentinel-2 as well as RapidEye for regional mapping of vegetation foliar properties, particularly, chlorophyll using RTMs such as INFORM. Numéro de notice : A2019-460 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2019.03.003 date de publication en ligne : 08/03/2019 En ligne : https://doi.org/10.1016/j.jag.2019.03.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93577
in International journal of applied Earth observation and geoinformation > vol 79 (July 2019) . - pp 58-70[article]Bayesian iterative reconstruction methods for 3D X-ray Computed Tomography / Camille Chapdelaine (2019)
PermalinkAn adaptive weighted tensor completion method for the recovery of remote sensing images with missing data / Michael Kwok-Po Ng in IEEE Transactions on geoscience and remote sensing, vol 55 n° 6 (June 2017)
PermalinkMapping individual tree health using full-waveform airborne laser scans and imaging spectroscopy: A case study for a floodplain eucalypt forest / Iurii Shendryk in Remote sensing of environment, vol 187 (15 December 2016)
PermalinkImproving the design of long-term monitoring experiments in forests: a new method for the assessment of local soil variability by combining infrared spectroscopy and dendrometric data / Emila Akroume in Annals of Forest Science [en ligne], vol 73 n° 4 (December 2016)
PermalinkSpectranomics: Emerging science and conservation opportunities at the interface of biodiversity and remote sensing / Gregory P. Asner in Global ecology and conservation, vol 8 (October 2016)
PermalinkTwo heads are better than one / Brian Curtiss in GEO: Geoconnexion international, vol 15 n° 8 (September 2016)
PermalinkAn interactive tool for semi-automatic feature extraction of hyperspectral data / Zoltan Kovacs in Open geosciences, vol 8 n° 1 (January - July 2016)
PermalinkA novel method to correct for wood MOE ultrasonics and NIRS measurements on increment cores in Liquidambar styraciflua L / Herizo Rakotovololonalimanana in Annals of Forest Science [en ligne], vol 72 n° 6 (September 2015)
PermalinkA fast classification scheme in Raman spectroscopy for the identification of mineral mixtures using a large database with correlated predictors / Corey J. Cochrane in IEEE Transactions on geoscience and remote sensing, vol 53 n° 8 (August 2015)
PermalinkAtmospheric water vapour sensing by means of differntial absorption spectrometry using solar and lunar radiation / Stefan Walter Münch (2014)
Permalink