Descripteur
Termes IGN > bathymétrie > relief sous-marin > récif > récif corallien
récif corallienSynonyme(s)Atoll |
Documents disponibles dans cette catégorie (28)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Framework for automatic coral reef extraction using Sentinel-2 image time series / Qizhi Zhang in Marine geodesy, vol 45 n° 3 (May 2022)
[article]
Titre : Framework for automatic coral reef extraction using Sentinel-2 image time series Type de document : Article/Communication Auteurs : Qizhi Zhang, Auteur ; Jian Zhang, Auteur ; Liang Cheng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 195 - 231 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Chine
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtrage de points
[Termes IGN] filtrage spatiotemporel
[Termes IGN] image Sentinel-MSI
[Termes IGN] mesure de similitude
[Termes IGN] nébulosité
[Termes IGN] récif corallien
[Termes IGN] série temporelleRésumé : (auteur) Using supervised and unsupervised classification on a single image to extract coral reef extent results in missing data and wrong extraction results. To improve the accuracy of coral reef extraction, this study proposes a novel technical framework for automatic coral reef extraction based on an image filtering strategy and spatiotemporal similarity measurements of pixel-level Sentinel-2 image time series. This method was applied to the Anda Reef, Daxian Reef, and Nanhua Reef, China, using 1464 Sentinel-2 images obtained from 2015–2020. Sentinel-2 images were automatically selected considering space, time, cloud cover, and image entropy after atmospheric correction. With the binary classification measurement standard using the digitization coral reef results of the Sentinel-2 images as the true value, the time series established by the modified normalized difference water index demonstrated high robustness and accuracy. Analyzing the time series curves of the coral reef and deep water verified that the spatiotemporal similarity measurement of this framework can stably extract the boundaries of the coral reef. Numéro de notice : A2022-353 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/01490419.2022.2051648 Date de publication en ligne : 28/03/2022 En ligne : https://doi.org/10.1080/01490419.2022.2051648 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100550
in Marine geodesy > vol 45 n° 3 (May 2022) . - pp 195 - 231[article]Evaluating the 3D integrity of underwater structure from motion workflows / Ian M. Lochhead in Photogrammetric record, vol 37 n° 177 (March 2022)
[article]
Titre : Evaluating the 3D integrity of underwater structure from motion workflows Type de document : Article/Communication Auteurs : Ian M. Lochhead, Auteur Année de publication : 2022 Article en page(s) : pp 35 - 60 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] auscultation d'ouvrage
[Termes IGN] chaîne de traitement
[Termes IGN] étalonnage d'instrument
[Termes IGN] fond marin
[Termes IGN] image sous-marine
[Termes IGN] modélisation 3D
[Termes IGN] Pacifique nord
[Termes IGN] récif corallien
[Termes IGN] semis de points
[Termes IGN] semis de points clairsemés
[Termes IGN] structure-from-motionRésumé : (auteur) Structure from motion (SfM) is an accessible and non-intrusive method of three-dimensional (3D) data capture popular for tropical coral reef surveying. In the north-east Pacific Ocean, where there are many environmentally sensitive benthic organisms whose morphology and function are equally important, SfM surveys are less commonly studied. Temperate waters pose unique challenges to SfM workflows, which must be systematically unpacked to understand their impact on data quality and veracity. This uncertainty raises broader questions concerning SfM as a spatial data-acquisition and ecological characterisation method in temperate waters, and whether a systematic workflow assessment reveals vital relationships between SfM implementation parameters, 3D data products and their implications for underwater SfM surveys. This paper, the second of two empirical assessments, reports on a series of wet-lab and dryland tests quantifying the impact that temperate waters, underwater cameras, and photograph quantity and configuration have on SfM accuracy. These tests provided crucial accuracy benchmarks informing subsequent field-based surveys and revealed that underwater SfM workflows can generate highly accurate 3D models in temperate waters. Numéro de notice : A2022-253 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : doi.org/10.1111/phor.12399 Date de publication en ligne : 07/03/2022 En ligne : https://doi.org/10.1111/phor.12399 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100216
in Photogrammetric record > vol 37 n° 177 (March 2022) . - pp 35 - 60[article]Coral habitat mapping: a comparison between maximum likelihood, Bayesian and Dempster–Shafer classifiers / Mohammad Shawkat Hossain in Geocarto international, vol 36 n° 11 ([15/06/2021])
[article]
Titre : Coral habitat mapping: a comparison between maximum likelihood, Bayesian and Dempster–Shafer classifiers Type de document : Article/Communication Auteurs : Mohammad Shawkat Hossain, Auteur ; Aidy M. Muslim, Auteur ; Muhammad Izuan Nadzri, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1217 - 1235 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] classification bayesienne
[Termes IGN] classification de Dempster-Shafer
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification pixellaire
[Termes IGN] fond marin
[Termes IGN] Google Earth
[Termes IGN] habitat d'espèce
[Termes IGN] image Quickbird
[Termes IGN] Malaisie
[Termes IGN] précision infrapixellaire
[Termes IGN] récif corallienRésumé : (auteur) This study deals with the mixed-pixel problem of detecting benthic habitat class membership and evaluates two soft classifiers for coral habitat mapping on Lang Tengah island (Malaysia). A comparison was made between the Bayesian and Dempster–Shafer (D–S) with a traditional maximum likelihood (ML). The heterogeneous pattern of reef environment, established by field observation, four classes of coral habitats containing various combinations of live coral, dead coral with algae, rubble coral and sand. Posterior probability and belief maps, generated by Bayesian and D–S, respectively, were evaluated by visual inspection and final coral habitat distribution maps were validated via accuracy assessment estimates. The accuracy validation tests agreed with the visual inspection of the probability, uncertainty and coral distribution maps. The Bayesian algorithm performed better, with a 34.7–68.5% improvement in accuracy compared to D–S and ML, respectively. Probability maps demonstrate the advantages of the soft classifier over the hard classifier for coral mapping. Numéro de notice : A2021-435 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1637466 Date de publication en ligne : 10/07/2019 En ligne : https://doi.org/10.1080/10106049.2019.1637466 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97803
in Geocarto international > vol 36 n° 11 [15/06/2021] . - pp 1217 - 1235[article]Cloud-native seascape mapping of Mozambique’s Quirimbas National Park with Sentinel-2 / Dimitris Poursanidis in Remote sensing in ecology and conservation, vol 7 n° 2 (June 2021)
[article]
Titre : Cloud-native seascape mapping of Mozambique’s Quirimbas National Park with Sentinel-2 Type de document : Article/Communication Auteurs : Dimitris Poursanidis, Auteur ; Dimosthenis Traganos, Auteur ; Luisa Teixeira, Auteur ; Aurélie Shapiro, Auteur ; Lara Muaves, Auteur Année de publication : 2021 Article en page(s) : pp 275 - 291 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] écosystème
[Termes IGN] Google Earth Engine
[Termes IGN] habitat (nature)
[Termes IGN] image Sentinel-MSI
[Termes IGN] Mozambique
[Termes IGN] récif corallien
[Termes IGN] réserve naturelle
[Termes IGN] surveillance écologiqueRésumé : (auteur) The lack of detailed spatial information on coastal resources, notably shallow water coral reefs and associated benthic habitats, impedes our ability to protect and manage them in the face of global climate change and anthropogenic impacts. Here, we develop a semi-automated workflow in the cloud that uses freely available Sentinel-2 data from the European Space Agency (ESA) Copernicus programme to derive information on near-shore coral reef habitats in the Quirimbas National Park (QNP), a recently declared biosphere reserve in northern Mozambique. We use an end-to-end cloud-based framework within the Google Earth Engine cloud geospatial platform to process imagery from raw pixels to cloud-free composites which are corrected for glint and surface artefacts, water column and derived estimated depth and then classified into four benthic habitats. Using independent training and validation data, we apply three supervised classification algorithms: random forests (RF), support vector machine (SVM) and classification and regression trees (CART). Our results show that random forests are the most accurate supervised algorithm with over 82% overall accuracy. We mapped over 105 000 ha of shallow water habitat inside the protected area, of which 18% are dominated by coral and hardbottom; 27.5% are seagrass and submerged aquatic vegetation and another 23.4% are soft and sandy substrates, and the remaining area is optically deep water. We employ satellite-derived bathymetry to assess slope, bathymetric position, rugosity and underwater topography of these habitats. Finally, a spectral unmixing model provides further sub-pixel–level information of habitats with the potential to monitor changes over time. This effort provides the first, consistent and repeatable and also scalable coastal information system for an east African tropical marine protected area, which hosts shallow-water ecosystems which are of great significance to local communities and building resilience towards climate change. Numéro de notice : A2021-733 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1002/rse2.187 Date de publication en ligne : 29/11/2020 En ligne : https://doi.org/10.1002/rse2.187 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98679
in Remote sensing in ecology and conservation > vol 7 n° 2 (June 2021) . - pp 275 - 291[article]Correcting misclassification errors in crowdsourced ecological data: A Bayesian perspective / Edgar Santos-Fernandez in Journal of the Royal Statistical Society: Series C Applied Statistics, vol 70 n° 1 (January 2021)
[article]
Titre : Correcting misclassification errors in crowdsourced ecological data: A Bayesian perspective Type de document : Article/Communication Auteurs : Edgar Santos-Fernandez, Auteur ; Erin E. Peterson, Auteur ; Julie Vercelloni, Auteur ; Em Rushworth, Auteur ; Kerrie Mengersen, Auteur Année de publication : 2021 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification bayesienne
[Termes IGN] données écologiques
[Termes IGN] estimation bayesienne
[Termes IGN] modèle d'incertitude
[Termes IGN] récif corallien
[Termes IGN] science citoyenneRésumé : (auteur) Many research domains use data elicited from ‘citizen scientists’ when a direct measure of a process is expensive or infeasible. However, participants may report incorrect estimates or classifications due to their lack of skill. We demonstrate how Bayesian hierarchical models can be used to learn about latent variables of interest, while accounting for the participants’ abilities. The model is described in the context of an ecological application that involves crowdsourced classifications of georeferenced coral-reef images from the Great Barrier Reef, Australia. The latent variable of interest is the proportion of coral cover, which is a common indicator of coral reef health. The participants’ abilities are expressed in terms of sensitivity and specificity of a correctly classified set of points on the images. The model also incorporates a spatial component, which allows prediction of the latent variable in locations that have not been surveyed. We show that the model outperforms traditional weighted-regression approaches used to account for uncertainty in citizen science data. Our approach produces more accurate regression coefficients and provides a better characterisation of the latent process of interest. This new method is implemented in the probabilistic programming language Stan and can be applied to a wide number of problems that rely on uncertain citizen science data. Numéro de notice : A2021-509 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/IMAGERIE/MATHEMATIQUE Nature : Article DOI : 10.1111/rssc.12453 Date de publication en ligne : 11/11/2020 En ligne : https://doi.org/10.1111/rssc.12453 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102439
in Journal of the Royal Statistical Society: Series C Applied Statistics > vol 70 n° 1 (January 2021)[article]Can ensemble techniques improve coral reef habitat classification accuracy using multispectral data? / Mohammad Shawkat Hossain in Geocarto international, vol 35 n° 11 ([01/08/2020])PermalinkDéveloppement de la photogrammétrie et d'analyses d'images pour l'étude et le suivi d'habitats marins / Guilhem Marre (2020)PermalinkNew quantitative indices from 3D modeling by photogrammetry to monitor coral reef environments / Isabel Urbina-Barreto (2020)PermalinkTowards new applications of underwater photogrammetry for investigating coral reef morphology and habitat complexity in the Myeik Archipelago, Myanmar / Martina Anelli in Geocarto international, vol 34 n° 5 ([01/05/2019])PermalinkA great feat / Knut Hartmann in GEO: Geoconnexion international, vol 13 n° 4 (april 2014)PermalinkVers une cartographie des trajectoires des communautés récifales en réponse aux perturbations : approche du blanchiment coralien sur l'île de la Réunion / G. Pennober in Revue Française de Photogrammétrie et de Télédétection, n° 197 (Juin 2012)PermalinkExperimentation of structured light and stereo vision for underwater 3D reconstruction / F. Bruno in ISPRS Journal of photogrammetry and remote sensing, vol 66 n° 4 (July - August 2011)PermalinkHierarchical segmentation-based software for cover classification analyses of seabed images (Seascape) / Nuria Teixido in Marine Ecology Progress Series, MEPS, n° 431 ([09/06/2011])PermalinkEvidence for a slow subsidence of the Tahiti Island from GPS, DORIS, and combined satellite altimetry and tide gauge sea level records / Abdelali Fadil in Comptes rendus : Géoscience, vol 343 n° 5 (May 2011)PermalinkThe influence of thematic and spatial resolution on maps of a coral reef ecosystem / M. Kendall in Marine geodesy, vol 31 n° 2 (June - September 2008)Permalink